|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.28.27.3169.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcCoth[(2 + z^2)/(2 Sqrt[1 + z^2])] ==
(Pi/(2 Sqrt[1 + z^2])) ((-(2 + z^2)) Sqrt[-(z^4/(1 + z^2))]
Sqrt[-((1 + z^2)/z^4)] Sqrt[-((1 + z^2)/(2 + z^2)^2)] -
I Sqrt[1 + 1/z^2] z ((-Sqrt[-(1/z)]) Sqrt[-z] + Sqrt[1/z] Sqrt[z] +
I Sqrt[-(1/z^2)] z - Sqrt[z/(I + z)] Sqrt[(I + z)/z] +
Sqrt[z/(-I + z)] Sqrt[(-I + z)/z])) + ((2 z)/Sqrt[1 + z^2])
Sqrt[1 + 1/z^2] ArcCsch[z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["2", "+", SuperscriptBox["z", "2"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["\[Pi]", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["z", "2"]]], ")"]]]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], "-", RowBox[List[SqrtBox[FractionBox["z", RowBox[List["\[ImaginaryI]", "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], "z"]]]], "+", RowBox[List[SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]], "z"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", " ", "z"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["ArcCsch", "[", "z", "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mi> π </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mrow> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> ⅈ </mi> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> ⅈ </mi> <mo> + </mo> <mi> z </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <mi> z </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mn> 4 </mn> </msup> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccoth /> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccsch /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["2", "+", SuperscriptBox["z_", "2"]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["z", "2"]]], ")"]]]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox["z", "4"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]]]], " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], "-", RowBox[List[SqrtBox[FractionBox["z", RowBox[List["\[ImaginaryI]", "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], "z"]]]], "+", RowBox[List[SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]], "z"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["ArcCsch", "[", "z", "]"]]]], SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|