ArcCoth
Elementary Functions
ArcCoth[
z
]
Representations through equivalent functions
With related functions
Involving sech
-1
Involving coth
-1
(
z
) (83 formulas)
Involving coth
-1
(
z
) and sech
-1
(
i
(1-
z
2
)/2
z
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
(
i
(
z
2
-1)/2
z
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
(1-
z
2
/1+
z
2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
(
z
2
-1/
z
2
+1) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
((1-
z
2
)
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
((
z
2
-1)
1/2
/
z
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
((
z
2
-1)
1/2
/(
z
2
)
1/2
) (3 formulas)
Involving coth
-1
(
z
) and sech
-1
((1-
z
2
)
1/2
/(-
z
2
)
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
(
z
2
-1/
z
2
1/2
) (3 formulas)
Involving coth
-1
(
z
) and sech
-1
(2
1/2
(1-
z
2
)
1/4
/((1-
z
2
)
1/2
+1)
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
(2
1/2
(1-
z
2
)
1/4
/((1-
z
2
)
1/2
-1)
1/2
) (7 formulas)
Involving coth
-1
(
z
) and sech
-1
((2(1-
z
2
)
1/2
/((1-
z
2
)
1/2
+1))
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
((2(1-
z
2
)
1/2
/((1-
z
2
)
1/2
-1))
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
(2
1/2
(
z
2
-1)
1/4
/((
z
2
-1)
1/2
+
z
)
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
(2
1/2
(
z
2
-1)
1/4
/((
z
2
-1)
1/2
-
z
)
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
((2(
z
2
-1)
1/2
/((
z
2
-1)
1/2
+
z
))
1/2
) (5 formulas)
Involving coth
-1
(
z
) and sech
-1
((2(
z
2
-1)
1/2
/((
z
2
-1)
1/2
-
z
))
1/2
) (5 formulas)