Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Transformations > Related transformations > Sums involving the direct function > Involving cot-1(z)





http://functions.wolfram.com/01.29.16.0174.01









  


  










Input Form





ArcCsch[x] + I ArcCot[y] == (-((I x Sqrt[1 + 1/y^2] y Sqrt[-((-1 - x^2 + 2 I Sqrt[1 + 1/x^2] x y + y^2)/ (x^2 (1 + y^2)))])/(I Sqrt[1 + 1/x^2] x + y))) ArcSinh[(I Sqrt[1 + 1/x^2] x - 1/y)/(x Sqrt[1 + 1/y^2])] + Pi I (1 - (I (1 + (I Sqrt[1 + 1/x^2] x)/y))/(x Sqrt[1 + 1/y^2] Sqrt[-((I Sqrt[1 + 1/x^2] x + y)^2/(x^2 (1 + y^2)))])) Floor[(Arg[Sqrt[1 + 1/x^2] + 1/x] + Arg[(I - 1/y)/Sqrt[1 + 1/y^2]])/ (2 Pi)] - Pi I (1 - (I x Sqrt[1 + 1/y^2] y Sqrt[-((-1 - x^2 + 2 I Sqrt[1 + 1/x^2] x y + y^2)/(x^2 (1 + y^2)))])/ (I Sqrt[1 + 1/x^2] x + y)) Floor[-((-Pi + Arg[Sqrt[1 + 1/x^2] + 1/x] + Arg[(I - 1/y)/Sqrt[1 + 1/y^2]])/(2 Pi))] + (Pi (1 + (I Sqrt[1 + 1/x^2] x)/y))/(2 x Sqrt[1 + 1/y^2] Sqrt[-((I Sqrt[1 + 1/x^2] x + y)^2/(x^2 (1 + y^2)))])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCsch", "[", "x", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCot", "[", "y", "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["x", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]], "+", SuperscriptBox["y", "2"]]], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]]]]], " ", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "-", FractionBox["1", "y"]]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "y"]]], ")"]]]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["x", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]], "+", SuperscriptBox["y", "2"]]], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "y"]]], ")"]]]], RowBox[List["2", " ", "x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mi> y </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mi> y </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mi> y </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> x </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> + </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arccsch /> <ci> x </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <arccot /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <ci> y </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> x </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcCsch", "[", "x_", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCot", "[", "y_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["x", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]], "+", SuperscriptBox["y", "2"]]], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "-", FractionBox["1", "y"]]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]]]]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "y"]]], ")"]]]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["x", "2"], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]], "+", SuperscriptBox["y", "2"]]], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "-", FractionBox["1", "y"]]], SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "y"]]], ")"]]]], RowBox[List["2", " ", "x", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", "y"]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["y", "2"]]], ")"]]]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02