|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.29.16.0202.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcCsch[x] - ArcTan[y] ==
-2 I Pi (Floor[(-Arg[Sqrt[1 + 1/x^2] + 1/x] - Arg[(1 - I y)^(-(I/2))] + Pi)/
(2 Pi)] + Floor[(Pi - Im[Log[Sqrt[1 + 1/x^2] + 1/x]])/(2 Pi)] +
Floor[((1/2) Re[Log[1 - I y]] + Pi)/(2 Pi)]) -
2 I Pi (Floor[(-Arg[(Sqrt[1 + 1/x^2] + 1/x)/(1 - I y)^(I/2)] -
Arg[(I y + 1)^(I/2)] + Pi)/(2 Pi)] +
Floor[(Pi - Im[Log[(Sqrt[1 + 1/x^2] + 1/x)/(1 - I y)^(I/2)]])/(2 Pi)] +
Floor[(Pi - (1/2) Re[Log[I y + 1]])/(2 Pi)]) +
Log[((Sqrt[1 + 1/x^2] + 1/x) (I y + 1)^(I/2))/(1 - I y)^(I/2)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCsch", "[", "x", "]"]], "-", RowBox[List["ArcTan", "[", "y", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]]]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]]]], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", "1"]], ")"]], RowBox[List["\[ImaginaryI]", "/", "2"]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", "1"]], "]"]], "]"]]]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", "1"]], ")"]], RowBox[List["\[ImaginaryI]", "/", "2"]]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo>  </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> ⅈ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> ⅈ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arccsch /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arctan /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <real /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <apply> <ln /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <real /> <apply> <ln /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcCsch", "[", "x_", "]"]], "-", RowBox[List["ArcTan", "[", "y_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]]]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]]]], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", "1"]], ")"]], RowBox[List["\[ImaginaryI]", "/", "2"]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", "1"]], "]"]], "]"]]]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "+", RowBox[List["Log", "[", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["1", "x"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "y"]]]], ")"]], RowBox[List["-", FractionBox["\[ImaginaryI]", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "y"]], "+", "1"]], ")"]], RowBox[List["\[ImaginaryI]", "/", "2"]]]]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|