Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Transformations > Related transformations > Differences involving the direct function > Involving sec-1(z)





http://functions.wolfram.com/01.29.16.0216.01









  


  










Input Form





ArcCsch[x] - I ArcSec[y] == ((Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))/ Sqrt[(Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))^2]) ArcSinh[Sqrt[1 - 1/y^2]/x + (I Sqrt[1 + 1/x^2])/y] - (1/2) I Pi (2 - (Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))/ Sqrt[(Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))^2]) + I Pi (1 + (Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))/ Sqrt[(Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))^2]) Floor[(Pi - Arg[Sqrt[1 + 1/x^2] - 1/x] - Arg[Sqrt[1 - 1/y^2] - I/y])/ (2 Pi)] - I Pi (1 - (Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))/ Sqrt[(Sqrt[1 + 1/x^2] Sqrt[1 - 1/y^2] + I/(x y))^2]) Floor[(Arg[Sqrt[1 + 1/x^2] - 1/x] + Arg[Sqrt[1 - 1/y^2] - I/y])/(2 Pi)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcCsch", "[", "x", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSec", "[", "y", "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]], RowBox[List["ArcSinh", "[", RowBox[List[FractionBox[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "x"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]]], "y"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "-", FractionBox["1", "x"]]], "]"]], "-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "-", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "-", FractionBox["1", "x"]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "-", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mi> x </mi> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arccsch /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <arcsec /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <ci> x </ci> <ci> y </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcCsch", "[", "x_", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSec", "[", "y_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[FractionBox[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "x"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]]]], "y"]]], "]"]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "-", FractionBox["1", "x"]]], "]"]], "-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "-", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox["\[ImaginaryI]", RowBox[List["x", " ", "y"]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", SuperscriptBox["x", "2"]]]]], "-", FractionBox["1", "x"]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "-", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02