|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.29.20.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[ArcCsch[z], {z, n}] == KroneckerDelta[n] ArcCsch[z] -
(z^(1 - 3 n)/(1/z^2 + 1)^(n - 1/2))
Sum[((Pochhammer[1/2, j] Pochhammer[-j - k, j]
Pochhammer[2 + 2 (j + k) - n, 2 (-1 - j - k + n)])/
((j - k)! (-1 - j - k + n)!)) 2^(2 (j + k) + 1 - n) z^(2 k)
(1 + 2 z^2)^(j - k) (1 + z^2)^(n - j - 1), {j, 0, n - 1},
{k, 0, n - j - 1}] /; Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["ArcCsch", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], RowBox[List["ArcCsch", "[", "z", "]"]]]], "-", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["1", "-", RowBox[List["3", "n"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", SuperscriptBox["z", "2"]], "+", "1"]], ")"]], RowBox[List["n", "-", RowBox[List["1", "/", "2"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "j", "-", "1"]]], " ", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "j"]], "-", "k"]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]]]], "-", "n"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "k", "+", "n"]], ")"]]]]]], "]"]]]], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "k", "+", "n"]], ")"]], "!"]]]], ")"]]]], SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]]]], "+", "1", "-", "n"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]], RowBox[List["j", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["n", "-", "j", "-", "1"]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </mrow> </msup> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "-", "k"]], ")"]], "j"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]]]], "-", "n", "+", "2"]], ")"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "j"]], "-", "k", "+", "n", "-", "1"]], ")"]]]]], Pochhammer] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> j </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <arccsch /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> </apply> <apply> <arccsch /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> j </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> j </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["ArcCsch", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], " ", RowBox[List["ArcCsch", "[", "z", "]"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "-", RowBox[List["3", " ", "n"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "j", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["-", "j"]], "-", "k"]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["2", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]]]], "-", "n"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "k", "+", "n"]], ")"]]]]]], "]"]]]], ")"]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["j", "+", "k"]], ")"]]]], "+", "1", "-", "n"]]], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]], RowBox[List["j", "-", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["n", "-", "j", "-", "1"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["j", "-", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "j", "-", "k", "+", "n"]], ")"]], "!"]]]]]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["1", SuperscriptBox["z", "2"]], "+", "1"]], ")"]], RowBox[List["n", "-", FractionBox["1", "2"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|