Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Arguments involving trigonometric functions > Involving csc





http://functions.wolfram.com/01.29.21.0019.01









  


  










Input Form





Integrate[ArcCsch[Csc[z]], z] == z ArcCsch[Csc[z]] + (1/4) (z (Log[1 - (Cos[z] + I Sqrt[1 + Sin[z]^2])/E^(I z)] - Log[1 - E^(I z) (Cos[z] + I Sqrt[1 + Sin[z]^2])] - Log[1 + (I (I Cos[z] + Sqrt[1 + Sin[z]^2]))/E^(I z)] + Log[1 + I E^(I z) (I Cos[z] + Sqrt[1 + Sin[z]^2])]) + ArcTan[Cos[z]/Sqrt[1 + Sin[z]^2]] (Log[1 - (Cos[z] + I Sqrt[1 + Sin[z]^2])/E^(I z)] + Log[1 - E^(I z) (Cos[z] + I Sqrt[1 + Sin[z]^2])] + Log[1 + (I (I Cos[z] + Sqrt[1 + Sin[z]^2]))/E^(I z)] + Log[1 + I E^(I z) (I Cos[z] + Sqrt[1 + Sin[z]^2])]) + I (-PolyLog[2, (Cos[z] - I Sqrt[1 + Sin[z]^2])/E^(I z)] - PolyLog[2, E^(I z) (Cos[z] - I Sqrt[1 + Sin[z]^2])] + PolyLog[2, (Cos[z] + I Sqrt[1 + Sin[z]^2])/E^(I z)] + PolyLog[2, E^(I z) (Cos[z] + I Sqrt[1 + Sin[z]^2])]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCsch", "[", RowBox[List["Csc", "[", "z", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["z", " ", RowBox[List["ArcCsch", "[", RowBox[List["Csc", "[", "z", "]"]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["ArcTan", "[", FractionBox[RowBox[List["Cos", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]]]], "-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <arccsch /> <apply> <csc /> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <arccsch /> <apply> <csc /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <arctan /> <apply> <times /> <apply> <cos /> <ci> z </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCsch", "[", RowBox[List["Csc", "[", "z_", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["z", " ", RowBox[List["ArcCsch", "[", RowBox[List["Csc", "[", "z", "]"]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["ArcTan", "[", FractionBox[RowBox[List["Cos", "[", "z", "]"]], SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Cos", "[", "z", "]"]]]], "+", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], ")"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]]]], "-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "z", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]], ")"]]]]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29