|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.29.21.0022.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[ArcCsch[Tanh[z]], z] ==
(-(1/4)) I (-8 I ArcSin[Sqrt[1/2 + I/2]]
ArcTan[((1 + I) Tan[(1/4) (Pi - 2 I ArcCsch[Tanh[z]])])/Sqrt[2]] -
8 ArcSin[Sqrt[1/2 - I/2]]
ArcTanh[((1 + I) Tan[(1/4) (Pi - 2 I ArcCsch[Tanh[z]])])/Sqrt[2]] +
Pi Log[1 - (-1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
2 I ArcCsch[Tanh[z]] Log[1 - (-1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
4 ArcSin[Sqrt[1/2 - I/2]] Log[1 - (-1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
Pi Log[1 + (-1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] +
2 I ArcCsch[Tanh[z]] Log[1 + (-1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
4 ArcSin[Sqrt[1/2 + I/2]] Log[1 + (-1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
Pi Log[1 - (1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] +
2 I ArcCsch[Tanh[z]] Log[1 - (1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] +
4 ArcSin[Sqrt[1/2 + I/2]] Log[1 - (1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] +
Pi Log[1 + (1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
2 I ArcCsch[Tanh[z]] Log[1 + (1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] +
4 ArcSin[Sqrt[1/2 - I/2]] Log[1 + (1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
Pi Log[-1 + Coth[z]] + Pi Log[1 + Coth[z]] +
2 I PolyLog[2, (-(-1 + Sqrt[2])) E^ArcCsch[Tanh[z]]] -
2 I PolyLog[2, (-1 + Sqrt[2]) E^ArcCsch[Tanh[z]]] -
2 I PolyLog[2, (-(1 + Sqrt[2])) E^ArcCsch[Tanh[z]]] +
2 I PolyLog[2, (1 + Sqrt[2]) E^ArcCsch[Tanh[z]]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]], ")"]]]], "]"]]]], SqrtBox["2"]], "]"]]]], "-", RowBox[List["8", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]], ")"]]]], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Coth", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["Coth", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> π </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 2 </mn> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> coth </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> coth </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> tanh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <imaginaryi /> <apply> <arcsin /> <apply> <power /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <arctan /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <tan /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <arcsin /> <apply> <power /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <imaginaryi /> </apply> <apply> <tan /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <power /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <power /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <power /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <arcsin /> <apply> <power /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <ln /> <apply> <plus /> <apply> <coth /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <ln /> <apply> <plus /> <apply> <coth /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <arccsch /> <apply> <tanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z_", "]"]], "]"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "\[ImaginaryI]", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]], ")"]]]], "]"]]]], SqrtBox["2"]], "]"]]]], "-", RowBox[List["8", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["Tan", "[", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]], ")"]]]], "]"]]]], SqrtBox["2"]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "+", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["ArcSin", "[", SqrtBox[RowBox[List[FractionBox["1", "2"], "-", FractionBox["\[ImaginaryI]", "2"]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Coth", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["Coth", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["2"]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["ArcCsch", "[", RowBox[List["Tanh", "[", "z", "]"]], "]"]]]]]]], "]"]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|