
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/01.29.21.0026.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[Log[b z] ArcCsch[a z], z] == z ArcCsch[a z] (-1 + Log[b z]) +
(Sqrt[1 + a^2 z^2] (-2 Sqrt[a^2/b^2] b ArcSinh[a z] -
a (ArcSinh[Sqrt[a^2/b^2] b z]^2 + 2 ArcSinh[Sqrt[a^2/b^2] b z]
Log[1 - E^(-2 ArcSinh[Sqrt[a^2/b^2] b z])] -
2 Log[b z] Log[Sqrt[a^2/b^2] b z + Sqrt[1 + a^2 z^2]]) +
a PolyLog[2, E^(-2 ArcSinh[Sqrt[a^2/b^2] b z])]))/
(2 (a^2/b^2)^(3/2) b^3 Sqrt[1 + 1/(a^2 z^2)] z)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["ArcCsch", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["z", " ", RowBox[List["ArcCsch", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", RowBox[List["ArcSinh", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "+", SqrtBox[RowBox[List["1", "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["b", "3"], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]]], " ", "z"]], ")"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <arccsch /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <arccsch /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arcsinh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <power /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Log", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["ArcCsch", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["z", " ", RowBox[List["ArcCsch", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", RowBox[List["ArcSinh", "[", RowBox[List["a", " ", "z"]], "]"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]], "2"], "+", RowBox[List["2", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "+", SqrtBox[RowBox[List["1", "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]]], " ", "b", " ", "z"]], "]"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox["a", "2"], SuperscriptBox["b", "2"]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["b", "3"], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]]], " ", "z"]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|