Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Representations through equivalent functions > With related functions > Involving sinh-1 > Involving csch-1((2z)1/2/(a-z)1/2) > Involving csch-1((2z)1/2/(i-z)1/2) and sinh-1(1/z)





http://functions.wolfram.com/01.29.27.1359.01









  


  










Input Form





ArcCsch[Sqrt[2 z]/Sqrt[I - z]] == ((I Pi Sqrt[2 z])/(4 Sqrt[I - z])) Sqrt[(I - z)/(2 z)] (1 - Sqrt[1/(1 + I z)] Sqrt[1 + I z] + Sqrt[1/z^2] z) + (1/2) Sqrt[I - z] Sqrt[1/(1 + I z)] Sqrt[-(I/z)] Sqrt[z] ArcSinh[1/z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCsch", "[", FractionBox[SqrtBox[RowBox[List["2", "z"]]], SqrtBox[RowBox[List["\[ImaginaryI]", "-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", SqrtBox[RowBox[List["2", "z"]]], " "]], RowBox[List["4", SqrtBox[RowBox[List["\[ImaginaryI]", "-", "z"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], RowBox[List["2", "z"]]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["\[ImaginaryI]", "-", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox["z"], RowBox[List["ArcSinh", "[", FractionBox["1", "z"], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> <msqrt> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> z </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccsch /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arcsinh /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCsch", "[", FractionBox[SqrtBox[RowBox[List["2", " ", "z_"]]], SqrtBox[RowBox[List["\[ImaginaryI]", "-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SqrtBox[RowBox[List["2", " ", "z"]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], RowBox[List["2", " ", "z"]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]]]], RowBox[List["4", " ", SqrtBox[RowBox[List["\[ImaginaryI]", "-", "z"]]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["\[ImaginaryI]", "-", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox["z"], " ", RowBox[List["ArcSinh", "[", FractionBox["1", "z"], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21