  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/01.29.27.1422.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    ArcCsch[1/(2 z Sqrt[1 + z^2])] == 
 (-((Pi Sqrt[1 + 2 z^2] Sqrt[z^2 + z^4])/(2 Sqrt[z^2] Sqrt[-1 - 2 z^2] 
      Sqrt[-1 - z^2]))) (Sqrt[-z^2]/z + I Sqrt[I/z] Sqrt[(-I) z] 
     Sqrt[1/(1 - I Sqrt[2] z)] Sqrt[1 - I Sqrt[2] z] - 
    I Sqrt[-(I/z)] Sqrt[I z] Sqrt[1/(1 + I Sqrt[2] z)] 
     Sqrt[1 + I Sqrt[2] z] + Sqrt[z^2 + z^4]/(z Sqrt[-1 - z^2])) - 
  (2 Sqrt[1 + 2 z^2] Sqrt[z^2 + z^4] ArcSinh[z])/(Sqrt[z^2] Sqrt[-1 - 2 z^2] 
    Sqrt[-1 - z^2]) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["ArcCsch", "[", FractionBox["1", RowBox[List["2", " ", "z", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox["z", "4"]]]], " "]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["z", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]]]], RowBox[List["(", RowBox[List[FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "z"], "+", RowBox[List["\[ImaginaryI]", SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]]], "-", RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]]], "+", FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox["z", "4"]]]], RowBox[List["z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]]]], ")"]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox["z", "4"]]]], " ", RowBox[List["ArcSinh", "[", "z", "]"]]]], RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> csch </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  <mo> + </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <msqrt>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mi> z </mi>  </mfrac>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mrow>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mfrac>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  <mo> + </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  <mo> + </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mrow>  <msqrt>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <arccsch />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <imaginaryi />  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <imaginaryi />  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <arcsinh />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCsch", "[", FractionBox["1", RowBox[List["2", " ", "z_", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox["z", "4"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "z"], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"], " ", "z"]]]]]]], "+", FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox["z", "4"]]]], RowBox[List["z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox["z", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]]]], "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", SuperscriptBox["z", "4"]]]], " ", RowBox[List["ArcSinh", "[", "z", "]"]]]], RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |