|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.29.27.1521.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcCsch[Sqrt[z^2]] == Sqrt[-1 - I z] Sqrt[I/(-I + z)] ArcCosh[I/z] -
(I Pi Sqrt[z^2])/(2 z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcCsch", "[", SqrtBox[SuperscriptBox["z", "2"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[FractionBox["\[ImaginaryI]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]]]], RowBox[List["ArcCosh", "[", FractionBox["\[ImaginaryI]", "z"], "]"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SqrtBox[SuperscriptBox["z", "2"]]]], RowBox[List["2", " ", "z"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mi> ⅈ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> ⅈ </mi> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccsch /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccosh /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCsch", "[", SqrtBox[SuperscriptBox["z_", "2"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", SqrtBox[FractionBox["\[ImaginaryI]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], "+", "z"]]]], " ", RowBox[List["ArcCosh", "[", FractionBox["\[ImaginaryI]", "z"], "]"]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SqrtBox[SuperscriptBox["z", "2"]]]], RowBox[List["2", " ", "z"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|