Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Representations through equivalent functions > With related functions > Involving tanh-1 > Involving csch-1(21/2 (z2-1)1/4/(z-(z2-1)1/2)1/2) > Involving csch-1(21/2 (z2-1)1/4/(z-(z2-1)1/2)1/2) and tanh-1(z)





http://functions.wolfram.com/01.29.27.1861.01









  


  










Input Form





ArcCsch[(Sqrt[2] (z^2 - 1)^(1/4))/Sqrt[z - Sqrt[z^2 - 1]]] == (1/2) Sqrt[z + 1] Sqrt[1/(z + 1)] ArcTanh[z] + (Pi/4) (I Sqrt[z] Sqrt[1/z] + Sqrt[-z^4]/z^2 + I Sqrt[(-1 + z)/z] Sqrt[z/(-1 + z)] - 2 I Sqrt[1/(1 + z)] Sqrt[1 + z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCsch", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], SqrtBox[RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["z", "+", "1"]]], SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], RowBox[List["ArcTanh", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "4"], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"], SqrtBox[FractionBox["1", "z"]]]], "+", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], RowBox[List[" ", SuperscriptBox["z", "2"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "z"]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> </mrow> <mo> + </mo> <mfrac> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccsch /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctanh /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCsch", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], SqrtBox[RowBox[List["z_", "-", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["z", "+", "1"]]], " ", SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], " ", RowBox[List["ArcTanh", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"], " ", SqrtBox[FractionBox["1", "z"]]]], "+", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "4"]]]], SuperscriptBox["z", "2"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "z"]]]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21