Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcCsch






Mathematica Notation

Traditional Notation









Elementary Functions > ArcCsch[z] > Representations through equivalent functions > With related functions > Involving coth-1 > Involving csch-1(z) > Involving csch-1(z) and coth-1((z2+1)1/2)





http://functions.wolfram.com/01.29.27.1890.01









  


  










Input Form





ArcCsch[z] == Sqrt[(I + z)/(I - z)] Sqrt[(I - z)/(I + z)] (z Sqrt[z^(-2)] ArcCoth[Sqrt[z^2 + 1]] - ((I Pi Sqrt[-z^2])/(2 z)) (Sqrt[I z - 1]/Sqrt[1 - I z] + Sqrt[(-I) z - 1]/Sqrt[I z + 1]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcCsch", "[", "z", "]"]], "\[Equal]", RowBox[List[SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], RowBox[List["\[ImaginaryI]", "-", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], RowBox[List["\[ImaginaryI]", "+", "z"]]]], RowBox[List["(", RowBox[List[RowBox[List["z", SqrtBox[SuperscriptBox["z", RowBox[List["-", "2"]]]], RowBox[List["ArcCoth", "[", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "-", "1"]]], SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], "+", FractionBox[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", "1"]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", "1"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <msqrt> <mfrac> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msqrt> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> + </mo> <mfrac> <msqrt> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arccsch /> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccoth /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcCsch", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], RowBox[List["\[ImaginaryI]", "-", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], RowBox[List["\[ImaginaryI]", "+", "z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", RowBox[List["ArcCoth", "[", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "-", "1"]]], SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]]], "+", FractionBox[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]], "-", "1"]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "z"]], "+", "1"]]]]]], ")"]]]], RowBox[List["2", " ", "z"]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21