| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.18.06.0039.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcSec[z]^2 == Pi^2/4 - (1/4) Log[-(4/z^2)]^2 + ((Pi z)/2) Sqrt[-(1/z^2)] 
    Log[-(4/z^2)] + (z^2/4) (Log[-(1/z^2)] - Pi z Sqrt[-(1/z^2)]) 
    HypergeometricPFQ[{3/2, 1, 1}, {2, 2}, z^2] + 
   (z^2/2) HypergeometricPFQ[{3/2, 1, 1, 1}, {2, 2, 2}, z^2] - 
   (z^2/4) Sum[(Pochhammer[3/2, k] (PolyGamma[-(1/2) - k] - PolyGamma[k + 1]) 
       z^(2 k))/((k + 1)^2 k!), {k, 0, Infinity}] /; Abs[z] < 1 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["ArcSec", "[", "z", "]"]], "2"], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "4"], " ", "-", RowBox[List[FractionBox["1", "4"], SuperscriptBox[RowBox[List["Log", "[", RowBox[List["-", FractionBox["4", SuperscriptBox["z", "2"]]]], "]"]], "2"]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "z"]], "2"], " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["Log", "[", RowBox[List["-", FractionBox["4", SuperscriptBox["z", "2"]]]], "]"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "4"], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]], "-", RowBox[List["\[Pi]", " ", "z", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]]], ")"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "2"]], "}"]], ",", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "2"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "1", ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "2", ",", "2"]], "}"]], ",", SuperscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List[FractionBox[SuperscriptBox["z", "2"], "4"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "2"], " ", RowBox[List["k", "!"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mrow>  <msup>  <mi> sec </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <msup>  <mi> π </mi>  <mn> 2 </mn>  </msup>  <mn> 4 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> log </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 4 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 3 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[SuperscriptBox["z", "2"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 4 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mn> 1 </mn>  <mo> , </mo>  <mn> 1 </mn>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 2 </mn>  <mo> , </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["2", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[SuperscriptBox["z", "2"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 4 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mfrac>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["3", "2"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msup>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> < </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <power />  <apply>  <arcsec />  <ci> z </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <pi />  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='rational'> 1 <sep /> 4 </cn>  <apply>  <power />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <ln />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <ci> z </ci>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='integer'> 1 </cn>  <cn type='integer'> 1 </cn>  </list>  <list>  <cn type='integer'> 2 </cn>  <cn type='integer'> 2 </cn>  </list>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 3 <sep /> 2 </cn>  <cn type='integer'> 1 </cn>  <cn type='integer'> 1 </cn>  <cn type='integer'> 1 </cn>  </list>  <list>  <cn type='integer'> 2 </cn>  <cn type='integer'> 2 </cn>  <cn type='integer'> 2 </cn>  </list>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ln />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <infinity />  </uplimit>  <apply>  <times />  <apply>  <ci> Pochhammer </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> PolyGamma </ci>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <factorial />  <ci> k </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <lt />  <apply>  <abs />  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["ArcSec", "[", "z_", "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "4"], "-", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["-", FractionBox["4", SuperscriptBox["z", "2"]]]], "]"]], "2"]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "z"]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["Log", "[", RowBox[List["-", FractionBox["4", SuperscriptBox["z", "2"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]], "-", RowBox[List["\[Pi]", " ", "z", " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]]]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "2"]], "}"]], ",", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "1", ",", "1", ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["2", ",", "2", ",", "2"]], "}"]], ",", SuperscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["z", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["3", "2"], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["2", " ", "k"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "2"], " ", RowBox[List["k", "!"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |