|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.18.06.0067.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSec[z]^2 == Subscript[F, Infinity][z] /;
Subscript[F, n][z] == Pi^2/4 -
(Pi/z) Sum[Pochhammer[1/2, k]/(z^(2 k) ((2 k + 1) k!)), {k, 0, n}] +
(1/z^2) Sum[(2^(2 k) k!^2)/(z^(2 k) ((2 k + 1)! (k + 1))), {k, 0, n}] ==
ArcSec[z]^2 + (Sqrt[Pi]/2) z^(-3 - 2 n) Gamma[3/2 + n]^2
HypergeometricPFQRegularized[{1, 3/2 + n, 3/2 + n}, {2 + n, 5/2 + n},
1/z^2] - (Sqrt[Pi]/2) z^(-4 - 2 n) Gamma[2 + n]^2
HypergeometricPFQRegularized[{1, 2 + n, 2 + n}, {5/2 + n, 3 + n},
1/z^2] && Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["ArcSec", "[", "z", "]"]], "2"], "\[Equal]", RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "4"], "-", RowBox[List[FractionBox["\[Pi]", "z"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox["z", "2"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "k"]]], " ", SuperscriptBox[RowBox[List["k", "!"]], "2"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]]]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["ArcSec", "[", "z", "]"]], "2"], StyleBox["+", Rule[FontWeight, "Plain"]], RowBox[List[StyleBox[FractionBox[SqrtBox["\[Pi]"], "2"], Rule[FontWeight, "Plain"]], StyleBox[SuperscriptBox["z", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["2", "n"]]]]], Rule[FontWeight, "Plain"]], StyleBox[" ", Rule[FontWeight, "Plain"]], StyleBox[SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]], "2"], Rule[FontWeight, "Plain"]], StyleBox[" ", Rule[FontWeight, "Plain"]], RowBox[List[StyleBox["HypergeometricPFQRegularized", Rule[FontWeight, "Plain"]], StyleBox["[", Rule[FontWeight, "Plain"]], RowBox[List[StyleBox[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]]]], "}"]], Rule[FontWeight, "Plain"]], StyleBox[",", Rule[FontWeight, "Plain"]], StyleBox[RowBox[List["{", RowBox[List[RowBox[List["2", "+", "n"]], ",", RowBox[List[FractionBox["5", "2"], "+", "n"]]]], "}"]], Rule[FontWeight, "Plain"]], StyleBox[",", Rule[FontWeight, "Plain"]], FractionBox["1", SuperscriptBox["z", "2"]]]], StyleBox["]", Rule[FontWeight, "Plain"]]]]]], "-", RowBox[List[FractionBox[SqrtBox["\[Pi]"], "2"], SuperscriptBox["z", RowBox[List[RowBox[List["-", "4"]], "-", RowBox[List["2", "n"]]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["2", "+", "n"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List["2", "+", "n"]], ",", RowBox[List["2", "+", "n"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", "n"]], ",", RowBox[List["3", "+", "n"]]]], "}"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]]]]]], StyleBox[")", Rule[FontWeight, "Plain"]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⩵ </mo> <mrow> <msub> <mi> F </mi> <mi> ∞ </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> F </mi> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mi> π </mi> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", FractionBox["1", "2"], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", FractionBox["3", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", FractionBox["3", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["n", "+", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", FractionBox["5", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[FractionBox["1", SuperscriptBox["z", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["n", "+", FractionBox["5", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "3"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[FractionBox["1", SuperscriptBox["z", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℕ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <arcsec /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <infinity /> </apply> <ci> z </ci> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> F </ci> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <arcsec /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </list> <list> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -4 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <plus /> <ci> n </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["ArcSec", "[", "z_", "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubscriptBox["F", "\[Infinity]"], "[", "z", "]"]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["F", "n"], "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "4"], "-", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]], "z"], "+", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["2", " ", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "!"]], ")"]], "2"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]]], SuperscriptBox["z", "2"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["ArcSec", "[", "z", "]"]], "2"], "+", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "3"]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "n"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "+", "n"]], ",", RowBox[List[FractionBox["3", "2"], "+", "n"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "+", "n"]], ",", RowBox[List[FractionBox["5", "2"], "+", "n"]]]], "}"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "4"]], "-", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["2", "+", "n"]], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", RowBox[List["2", "+", "n"]], ",", RowBox[List["2", "+", "n"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", "n"]], ",", RowBox[List["3", "+", "n"]]]], "}"]], ",", FractionBox["1", SuperscriptBox["z", "2"]]]], "]"]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|