Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSec






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSec[z] > Transformations > Related transformations > Sums involving the direct function > Involving sin-1(z)





http://functions.wolfram.com/01.18.16.0122.01









  


  










Input Form





ArcSec[x] + ArcSin[y] == ((y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])/ Sqrt[(y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])^2]) ArcSin[Sqrt[1 - 1/x^2] y - Sqrt[1 - y^2]/x] + (1/2) Pi ((y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])/ Sqrt[(y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])^2]) + Pi (1 + (y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])/ Sqrt[(y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])^2]) Floor[(Pi - Arg[Sqrt[1 - 1/x^2] + I/x] - Arg[(-I) y + Sqrt[1 - y^2]])/ (2 Pi)] - Pi (1 - (y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])/ Sqrt[(y/x + Sqrt[1 - 1/x^2] Sqrt[1 - y^2])^2]) Floor[(Arg[Sqrt[1 - 1/x^2] + I/x] + Arg[(-I) y + Sqrt[1 - y^2]])/(2 Pi)]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSec", "[", "x", "]"]], "+", RowBox[List["ArcSin", "[", "y", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]], RowBox[List["ArcSin", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "y"]], "-", FractionBox[SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]], "x"]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", FractionBox[RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "-", RowBox[List["Arg", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "y"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "y"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> y </mi> </mrow> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mfrac> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> y </mi> <mi> x </mi> </mfrac> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arcsec /> <ci> x </ci> </apply> <apply> <arcsin /> <ci> y </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsin /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> y </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> y </ci> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcSec", "[", "x_", "]"]], "+", RowBox[List["ArcSin", "[", "y_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "y"]], "-", FractionBox[SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]], "x"]]], "]"]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "-", RowBox[List["Arg", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "y"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox["y", "x"], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "y"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02