| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.18.16.0133.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcSec[x] + ArcSinh[y] == 
 -2 I Pi (Floor[(-Arg[(Sqrt[1 - 1/x^2] + I/x)^I] - Arg[y + Sqrt[y^2 + 1]] + 
       Pi)/(2 Pi)] + Floor[(Pi - Im[Log[y + Sqrt[y^2 + 1]]])/(2 Pi)] + 
    Floor[(Pi - Re[Log[Sqrt[1 - 1/x^2] + I/x]])/(2 Pi)]) + 
  I (1 - (-1)^(Floor[-(Arg[(Sqrt[1 - 1/x^2] + I/x)^I (y + Sqrt[y^2 + 1]) + 1]/
         (2 Pi))] - Floor[-(Arg[(Sqrt[1 - 1/x^2] + I/x)^I 
           (y + Sqrt[y^2 + 1])]/(2 Pi))])) Pi - 
  I (-1)^(Floor[-(Arg[(Sqrt[1 - 1/x^2] + I/x)^I (y + Sqrt[y^2 + 1])]/Pi)] + 
     Floor[Arg[(Sqrt[1 - 1/x^2] + I/x)^I (y + Sqrt[y^2 + 1]) - 1]/(2 Pi) - 
       Arg[(Sqrt[1 - 1/x^2] + I/x)^I (y + Sqrt[y^2 + 1]) + 1]/(2 Pi) + 1/2]) 
   ArcSec[(2 (Sqrt[1 - 1/x^2] + I/x)^I (y + Sqrt[y^2 + 1]))/
     ((Sqrt[1 - 1/x^2] + I/x)^(2 I) (y + Sqrt[y^2 + 1])^2 + 1)] + Pi/2 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSec", "[", "x", "]"]], "+", RowBox[List["ArcSinh", "[", "y", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], "]"]]]], "-", RowBox[List["Arg", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]], "-", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]], ")"]], " ", "\[Pi]"]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "]"]], "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]]]]], " ", RowBox[List["ArcSec", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], RowBox[List["2", " ", "\[ImaginaryI]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]], "2"]]], "+", "1"]]], "]"]]]], "+", FractionBox["\[Pi]", "2"]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <mi> sec </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> y </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ⅈ </mi>  </msup>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mi> π </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> + </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> - </mo>  <mrow>  <mi> Im </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> + </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> π </mi>  <mo> - </mo>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ⅈ </mi>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  <mo> - </mo>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ⅈ </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ⅈ </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ⅈ </mi>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  <mo> + </mo>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ⅈ </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mi> π </mi>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sec </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mi> ⅈ </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> y </mi>  <mo> + </mo>  <msqrt>  <mrow>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> x </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <plus />  <apply>  <arcsec />  <ci> x </ci>  </apply>  <apply>  <arcsinh />  <ci> y </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <pi />  <apply>  <plus />  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <arg />  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <arg />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <imaginaryi />  </apply>  </apply>  </apply>  <pi />  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <pi />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <imaginary />  <apply>  <ln />  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <pi />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <real />  <apply>  <ln />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <floor />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <imaginaryi />  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <floor />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <imaginaryi />  </apply>  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <pi />  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <floor />  <apply>  <plus />  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <imaginaryi />  </apply>  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <imaginaryi />  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <floor />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <arg />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <imaginaryi />  </apply>  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <pi />  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <arcsec />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <imaginaryi />  </apply>  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> y </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> x </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcSec", "[", "x_", "]"]], "+", RowBox[List["ArcSinh", "[", "y_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], "]"]]]], "-", RowBox[List["Arg", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]], "-", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]], ")"]], " ", "\[Pi]"]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "]"]], "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]]]]], " ", RowBox[List["ArcSec", "[", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]]]], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], ")"]], RowBox[List["2", " ", "\[ImaginaryI]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["y", "+", SqrtBox[RowBox[List[SuperscriptBox["y", "2"], "+", "1"]]]]], ")"]], "2"]]], "+", "1"]]], "]"]]]], "+", FractionBox["\[Pi]", "2"]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |