|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.18.16.0141.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSec[x] + I ArcTanh[y] ==
((x Sqrt[(1 - I Sqrt[1 - 1/x^2] x y)^2/(x^2 (1 - y^2))] Sqrt[1 - y^2])/
(1 - I Sqrt[1 - 1/x^2] x y)) ArcSin[(Sqrt[1 - 1/x^2] x + I y)/
(x Sqrt[1 - y^2])] + (Pi/2) (1 - (1 - I Sqrt[1 - 1/x^2] x y)/
(x Sqrt[(1 - I Sqrt[1 - 1/x^2] x y)^2/(x^2 (1 - y^2))] Sqrt[1 - y^2])) -
Pi (1 + (1 - I Sqrt[1 - 1/x^2] x y)/
(x Sqrt[(1 - I Sqrt[1 - 1/x^2] x y)^2/(x^2 (1 - y^2))] Sqrt[1 - y^2]))
Floor[(Arg[Sqrt[1 - 1/x^2] + I/x] + Arg[(I + I y)/Sqrt[1 - y^2]])/
(2 Pi)] + Pi (1 - (x Sqrt[(1 - I Sqrt[1 - 1/x^2] x y)^2/(x^2 (1 - y^2))]
Sqrt[1 - y^2])/(1 - I Sqrt[1 - 1/x^2] x y))
Floor[-((-Pi + Arg[Sqrt[1 - 1/x^2] + I/x] + Arg[(I + I y)/Sqrt[1 - y^2]])/
(2 Pi))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSec", "[", "x", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcTanh", "[", "y", "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]], " "]], RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]]], RowBox[List["ArcSin", "[", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]], "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]]], ")"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]], RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo>  </mo> <mrow> <mrow> <mfrac> <mrow> <mi> x </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mrow> <mi> x </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mrow> <mi> x </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mrow> <mi> x </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mi> x </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mi> x </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> + </mo> <mfrac> <mi> ⅈ </mi> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arcsec /> <ci> x </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <arctanh /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsin /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> </apply> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> x </ci> <ci> y </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <arg /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcSec", "[", "x_", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcTanh", "[", "y_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]], ")"]], " ", RowBox[List["ArcSin", "[", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x"]], "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], RowBox[List["x", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]], "]"]]]], RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]]], ")"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List["x", " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]], ")"]], "2"], RowBox[List[SuperscriptBox["x", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["y", "2"]]], ")"]]]]]], " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]]], RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], " ", "x", " ", "y"]]]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["x", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "x"]]], "]"]], "+", RowBox[List["Arg", "[", FractionBox[RowBox[List["\[ImaginaryI]", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["y", "2"]]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|