Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSech






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSech[z] > Transformations > Related transformations > Linear combinations involving the direct function > Involving cot-1(z)





http://functions.wolfram.com/01.30.16.0241.01









  


  










Input Form





a ArcSech[x] + b ArcCot[y] == -2 I Pi (Floor[(-Arg[(Sqrt[1/x - 1] Sqrt[1 + 1/x] + 1/x)^a] - Arg[(1 - I/y)^((I b)/2)] + Pi)/(2 Pi)] + Floor[(Pi - Im[a Log[Sqrt[1/x - 1] Sqrt[1 + 1/x] + 1/x]])/(2 Pi)] + Floor[(Pi - (1/2) Re[b Log[1 - I/y]])/(2 Pi)]) - 2 I Pi (Floor[(-Arg[(Sqrt[1/x - 1] Sqrt[1 + 1/x] + 1/x)^a (1 - I/y)^((I b)/2)] - Arg[(1 + I/y)^((-(1/2)) (I b))] + Pi)/(2 Pi)] + Floor[(Pi - Im[Log[(Sqrt[1/x - 1] Sqrt[1 + 1/x] + 1/x)^a (1 - I/y)^((I b)/2)]])/(2 Pi)] + Floor[((1/2) Re[b Log[1 + I/y]] + Pi)/(2 Pi)]) + Log[((Sqrt[1/x - 1] Sqrt[1 + 1/x] + 1/x)^a (1 - I/y)^((I b)/2))/ (1 + I/y)^((1/2) (I b))]










Standard Form





Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["a", " ", RowBox[List["ArcSech", "[", "x", "]"]]]], "+", RowBox[List["b", " ", RowBox[List["ArcCot", "[", "y", "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["a", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], "]"]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["b", " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], "]"]]]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]]]], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox["\[ImaginaryI]", "y"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["b", " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], "]"]]]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox["\[ImaginaryI]", "y"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]]]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> ) </mo> </mrow> <mo> + </mo> <mi> &#960; </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> x </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> a </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mi> &#8520; </mi> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <arcsech /> <ci> x </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <arccot /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <real /> <apply> <times /> <ci> b </ci> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <apply> <ln /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <apply> <times /> <ci> a </ci> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <real /> <apply> <times /> <ci> b </ci> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["a_", " ", RowBox[List["ArcSech", "[", "x_", "]"]]]], "+", RowBox[List["b_", " ", RowBox[List["ArcCot", "[", "y_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["a", " ", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], "]"]]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["b", " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], "]"]]]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]]]], "]"]]]], "-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox["\[ImaginaryI]", "y"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]]]], "]"]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Re", "[", RowBox[List["b", " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], "]"]]]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]], "+", RowBox[List["Log", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "x"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "x"]]]]]], "+", FractionBox["1", "x"]]], ")"]], "a"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", FractionBox["\[ImaginaryI]", "y"]]], ")"]], FractionBox[RowBox[List["\[ImaginaryI]", " ", "b"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", FractionBox["\[ImaginaryI]", "y"]]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b"]], ")"]]]]]]], "]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02