|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.30.19.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sign[ArcSech[x + I y]] ==
(I ArcTan[(1/(x^2 + y^2)) (x + (x + x^2 + y^2)
Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Cos[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]] +
y Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Sin[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]]),
-((1/(x^2 + y^2)) (y + y Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/
Sqrt[1 + 2 x + x^2 + y^2]]
Cos[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]] - (x + x^2 + y^2)
Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Sin[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]]))] +
Log[Sqrt[(1/(x^2 + y^2)) (1 + Sqrt[1 - 2 x + x^2 + y^2]
Sqrt[(1 + x)^2 + y^2] + 2 (1 + x) Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/
Sqrt[1 + 2 x + x^2 + y^2]]
Cos[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]] -
2 y Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Sin[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]])]])/
Sqrt[ArcTan[(1/(x^2 + y^2)) (x + (x + x^2 + y^2)
Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Cos[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]] +
y Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Sin[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]]),
-((1/(x^2 + y^2)) (y + y Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/
Sqrt[1 + 2 x + x^2 + y^2]]
Cos[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]] - (x + x^2 + y^2)
Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Sin[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]]))]^2 +
Log[Sqrt[(1/(x^2 + y^2)) (1 + Sqrt[1 - 2 x + x^2 + y^2]
Sqrt[(1 + x)^2 + y^2] + 2 (1 + x) Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/
Sqrt[1 + 2 x + x^2 + y^2]]
Cos[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]] -
2 y Sqrt[Sqrt[1 - 2 x + x^2 + y^2]/Sqrt[1 + 2 x + x^2 + y^2]]
Sin[(1/2) ArcTan[-((-1 + x^2 + y^2)/(1 + 2 x + x^2 + y^2)),
-((2 y)/(1 + 2 x + x^2 + y^2))]])]]^2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Sign", "[", RowBox[List["ArcSech", "[", RowBox[List["x", "+", RowBox[List["\[ImaginaryI]", " ", "y"]]]], "]"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], ")"]]]], ",", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["y", "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], ")"]]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List["2", " ", "y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], ")"]]]], ")"]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], ")"]]]], ",", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["y", "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], ")"]]]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List["2", " ", "y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], ")"]]]], ")"]]]], "]"]], "2"]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sgn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> y </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> x </mi> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> y </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mo> + </mo> <mi> y </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> x </mi> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> x </mi> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> y </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mo> + </mo> <mi> y </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> x </mi> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mo> √ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> y </mi> </mrow> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <msup> <mi> x </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Sign </ci> <apply> <arcsech /> <apply> <plus /> <ci> x </ci> <apply> <times /> <imaginaryi /> <ci> y </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <arctan /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> x </ci> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <ci> x </ci> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> y </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <ci> y </ci> </apply> <ci> y </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <ci> x </ci> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <root /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <root /> <apply> <plus /> <apply> <power /> <apply> <arctan /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> x </ci> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <ci> x </ci> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> y </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <ci> y </ci> </apply> <ci> y </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <ci> x </ci> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <root /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arctan /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sign", "[", RowBox[List["ArcSech", "[", RowBox[List["x_", "+", RowBox[List["\[ImaginaryI]", " ", "y_"]]]], "]"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcTan", "[", RowBox[List[FractionBox[RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["y", "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", SqrtBox[FractionBox[RowBox[List["1", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List["2", " ", "y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", RowBox[List[FractionBox[RowBox[List["x", "+", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["y", "+", RowBox[List["y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["x", "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]], "2"], "+", SuperscriptBox[RowBox[List["Log", "[", SqrtBox[FractionBox[RowBox[List["1", "+", RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], " ", SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], "2"], "+", SuperscriptBox["y", "2"]]]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "x"]], ")"]], " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]], "-", RowBox[List["2", " ", "y", " ", SqrtBox[FractionBox[SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]], SqrtBox[RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "y"]], RowBox[List["1", "+", RowBox[List["2", " ", "x"]], "+", SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]]]]], "]"]]]], "]"]]]]]], RowBox[List[SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]]]]], "]"]], "2"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|