
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/01.30.21.0028.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[z^(\[Alpha] - 1) Log[b z] ArcSech[a z], z] ==
(1/\[Alpha]^3) (z^\[Alpha] (\[Alpha] ArcSech[a z] (-1 + \[Alpha] Log[b z]) -
(Sqrt[1 + a z] Sqrt[1 - a^2 z^2] HypergeometricPFQ[
{1/2, \[Alpha]/2, \[Alpha]/2}, {1 + \[Alpha]/2, 1 + \[Alpha]/2},
a^2 z^2] - ((1/2) Sqrt[1 + a z] Sqrt[1 - a^2 z^2] \[Alpha]^2
Beta[a^2 z^2, \[Alpha]/2, 1/2] Log[z])/(a^2 z^2)^(\[Alpha]/2) +
((1/2) Sqrt[1 - a z] (1 + a z) \[Alpha] Beta[a^2 z^2, \[Alpha]/2, 1/2]
(1 + \[Alpha] Log[z] - \[Alpha] Log[b z]))/(a^2 z^2)^(\[Alpha]/2))/
(Sqrt[(1 - a z)/(1 + a z)] (1 + a z)^(3/2))))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["ArcSech", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", SuperscriptBox["\[Alpha]", "3"]], RowBox[List["(", RowBox[List[SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Alpha]", " ", RowBox[List["ArcSech", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[Alpha]", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["\[Alpha]", "2"], ",", FractionBox["\[Alpha]", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["\[Alpha]", "2"]]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "2"]]]]], "}"]], ",", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[RowBox[List["-", "\[Alpha]"]], "/", "2"]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SuperscriptBox["\[Alpha]", "2"], " ", RowBox[List["Beta", "[", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ",", FractionBox["\[Alpha]", "2"], ",", FractionBox["1", "2"]]], "]"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[RowBox[List["-", "\[Alpha]"]], "/", "2"]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["a", " ", "z"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", "\[Alpha]", " ", RowBox[List["Beta", "[", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ",", FractionBox["\[Alpha]", "2"], ",", FractionBox["1", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Alpha]", " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List["\[Alpha]", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["a", " ", "z"]]]], RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mi> α </mi> </msup> <msup> <mi> α </mi> <mn> 3 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> α </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> α </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> α </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msub> <mo> ( </mo> <mrow> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mi> α </mi> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Β </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msub> <mo> ( </mo> <mrow> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> α </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> α </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["\[Alpha]", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["\[Alpha]", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["\[Alpha]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["\[Alpha]", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> α </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <arcsech /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> α </ci> </apply> <apply> <power /> <apply> <power /> <ci> α </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <arcsech /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> α </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Beta </ci> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> α </ci> <apply> <ci> Beta </ci> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <ln /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["Log", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["ArcSech", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Alpha]", " ", RowBox[List["ArcSech", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[Alpha]", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["\[Alpha]", "2"], ",", FractionBox["\[Alpha]", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", FractionBox["\[Alpha]", "2"]]], ",", RowBox[List["1", "+", FractionBox["\[Alpha]", "2"]]]]], "}"]], ",", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox["\[Alpha]", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]]], " ", SuperscriptBox["\[Alpha]", "2"], " ", RowBox[List["Beta", "[", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ",", FractionBox["\[Alpha]", "2"], ",", FractionBox["1", "2"]]], "]"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox["\[Alpha]", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["a", " ", "z"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", "\[Alpha]", " ", RowBox[List["Beta", "[", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]], ",", FractionBox["\[Alpha]", "2"], ",", FractionBox["1", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[Alpha]", " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List["\[Alpha]", " ", RowBox[List["Log", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], RowBox[List[SqrtBox[FractionBox[RowBox[List["1", "-", RowBox[List["a", " ", "z"]]]], RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", "z"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], ")"]]]], SuperscriptBox["\[Alpha]", "3"]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|