|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.30.27.0257.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSech[Sqrt[2]/Sqrt[1 - Sqrt[1 + z^2]]] ==
(Pi/2) (I + (Sqrt[-z] Sqrt[z^2])/z^(3/2) - I Sqrt[(z^2 + 1)/z^2]
Sqrt[z^2/(1 + z^2)]) + ((I Sqrt[z] (1 + z^2))/
(2 Sqrt[-z] Sqrt[-(1 + z^2)^2])) ArcSin[I z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcSech", "[", FractionBox[SqrtBox[RowBox[List["2", " "]]], SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[SuperscriptBox["z", "2"]]]], SuperscriptBox["z", RowBox[List["3", "/", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]], SuperscriptBox["z", "2"]]], " ", SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]]]], RowBox[List["ArcSin", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mn> 2 </mn> <mtext> </mtext> </mrow> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> + </mo> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsech /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <imaginaryi /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsin /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", FractionBox[SqrtBox["2"], SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[SuperscriptBox["z", "2"]]]], SuperscriptBox["z", RowBox[List["3", "/", "2"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]], SuperscriptBox["z", "2"]]], " ", SqrtBox[FractionBox[SuperscriptBox["z", "2"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]], ")"]], " ", RowBox[List["ArcSin", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|