Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSech






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSech[z] > Representations through equivalent functions > With related functions > Involving cot-1 > Involving sech-1(z) > Involving sech-1(z) and cot-1(1/z-(z2-1)1/2)





http://functions.wolfram.com/01.30.27.0868.01









  


  










Input Form





ArcSech[z] == (Sqrt[z/(z - 1)] Sqrt[(z - 1)/z] + I ((2 z - Sqrt[z^2])/Sqrt[-z]) Sqrt[1/z] - 1) ((Pi I)/2) - ((2 Sqrt[z^2])/(Sqrt[-1 + z] Sqrt[z])) Sqrt[(1 - z)/z] ArcCot[1/(z - Sqrt[z^2 - 1])]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSech", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["z", RowBox[List["z", "-", "1"]]]], SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], "z"]]]], "+", RowBox[List["\[ImaginaryI]", FractionBox[RowBox[List[RowBox[List["2", " ", "z"]], "-", SqrtBox[SuperscriptBox["z", "2"]]]], SqrtBox[RowBox[List["-", "z"]]]], SqrtBox[FractionBox["1", "z"]]]], "-", "1"]], ")"]], FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]], "-", RowBox[List[FractionBox[RowBox[List["2", SqrtBox[SuperscriptBox["z", "2"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", SqrtBox["z"]]]], SqrtBox[FractionBox[RowBox[List["1", "-", "z"]], "z"]], RowBox[List["ArcCot", "[", FractionBox["1", RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> </msqrt> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </msqrt> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsech /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccot /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["z", RowBox[List["z", "-", "1"]]]], " ", SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], "z"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z"]], "-", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", SqrtBox[FractionBox["1", "z"]]]], SqrtBox[RowBox[List["-", "z"]]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "-", "z"]], "z"]], " ", RowBox[List["ArcCot", "[", FractionBox["1", RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", SqrtBox["z"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21