Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSech






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSech[z] > Representations through equivalent functions > With related functions > Involving csc-1 > Involving sech-1(z) > Involving sech-1(z) and csc-1((-z2)1/2/(1-z2)1/2)





http://functions.wolfram.com/01.30.27.1129.01









  


  










Input Form





ArcSech[z] == (1/Sqrt[1 - 1/z]) Sqrt[1/z - 1] ((Pi/2) (1 - z Sqrt[1/z^2]) + ((Sqrt[-z] z^(3/2) Sqrt[-1 + z^2])/Sqrt[z^2 - z^4]) Sqrt[1/z^2] ArcCsc[Sqrt[-z^2]/Sqrt[1 - z^2]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSech", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["1", "-", FractionBox["1", "z"]]]]], SqrtBox[RowBox[List[FractionBox["1", "z"], "-", "1"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "4"]]]]], SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", RowBox[List["ArcCsc", "[", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsech /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccsc /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "z"], "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["-", "z"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]], ")"]], " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", RowBox[List["ArcCsc", "[", FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]], "]"]]]], SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", SuperscriptBox["z", "4"]]]]]]], ")"]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", "z"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21