| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.30.27.1365.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcSech[z] == (Pi/(4 Sqrt[(-1 + z)/z])) Sqrt[-1 + 1/z] 
   (2 - (Sqrt[1/z^4 - 1/z^2] z)/Sqrt[-1 + 1/z^2] - Sqrt[1/z^2] z - 
    Sqrt[1 - Sqrt[2]/z] Sqrt[-(1/z)] Sqrt[-z] Sqrt[z/(-Sqrt[2] + z)] + 
    Sqrt[1/z] Sqrt[z] Sqrt[z/(Sqrt[2] + z)] Sqrt[(Sqrt[2] + z)/z]) + 
  (-((Sqrt[(Sqrt[2] - z) (-1 + z)] Sqrt[Sqrt[2] + z])/
     (2 Sqrt[1/z^4 - 1/z^2] z^(3/2) Sqrt[-2 + z^2]))) Sqrt[-((1 + z)/z)] 
   (Pi/2 - ArcSec[z^2/(2 Sqrt[z^2 - 1])]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["ArcSech", "[", "z", "]"]], "\[Equal]", " ", RowBox[List[RowBox[List[FractionBox["\[Pi]", RowBox[List["4", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]], "z"]]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["1", "z"]]]], RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox["z", "4"]], "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SqrtBox["2"], "z"]]]], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox[RowBox[List["-", "z"]]], SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", SqrtBox["2"]]], "+", "z"]]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["z", RowBox[List[SqrtBox["2"], "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List[SqrtBox["2"], "+", "z"]], "z"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["2"], "-", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", "z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox["z", "4"]], "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z", "2"]]]]]]]]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", "z"]], "z"]]]], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["ArcSec", "[", FractionBox[SuperscriptBox["z", "2"], RowBox[List["2", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]], "]"]]]], ")"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> sech </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mfrac>  <mi> π </mi>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> z </mi>  </mfrac>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </msqrt>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <msqrt>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mfrac>  <mo> + </mo>  <mrow>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> z </mi>  <mrow>  <mi> z </mi>  <mo> + </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> z </mi>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </msqrt>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mtext>   </mtext>  <mrow>  <msup>  <mi> sec </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <arcsech />  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <pi />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <arcsec />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["1", "z"]]]], " ", RowBox[List["(", RowBox[List["2", "-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox["z", "4"]], "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox["1", SuperscriptBox["z", "2"]]]]]], "-", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox[SqrtBox["2"], "z"]]]], " ", SqrtBox[RowBox[List["-", FractionBox["1", "z"]]]], " ", SqrtBox[RowBox[List["-", "z"]]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", SqrtBox["2"]]], "+", "z"]]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", "z"]], " ", SqrtBox["z"], " ", SqrtBox[FractionBox["z", RowBox[List[SqrtBox["2"], "+", "z"]]]], " ", SqrtBox[FractionBox[RowBox[List[SqrtBox["2"], "+", "z"]], "z"]]]]]], ")"]]]], RowBox[List["4", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]], "z"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["2"], "-", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", "z"]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", "z"]], "z"]]]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["ArcSec", "[", FractionBox[SuperscriptBox["z", "2"], RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]], "]"]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[FractionBox["1", SuperscriptBox["z", "4"]], "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z", "2"]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |