|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.30.27.2251.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSech[z] == (3 Pi I)/4 - (1/2) ArcCoth[(2 Sqrt[1 - z^2])/(z^2 - 2)] /;
Inequality[-Pi, Less, Arg[z], LessEqual, -(Pi/2)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSech", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["3", "\[Pi]", " ", "\[ImaginaryI]"]], "4"], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], RowBox[List[SuperscriptBox["z", "2"], "-", "2"]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", RowBox[List["-", FractionBox["\[Pi]", "2"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 2 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> - </mo> <mi> π </mi> </mrow> <mo> < </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arcsech /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <arccoth /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <lt /> <apply> <arg /> <ci> z </ci> </apply> <leq /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List["3", " ", "\[Pi]", " ", "\[ImaginaryI]"]], "4"], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["ArcCoth", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], RowBox[List[SuperscriptBox["z", "2"], "-", "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["-", "\[Pi]"]], "<", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", RowBox[List["-", FractionBox["\[Pi]", "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|