Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSech






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSech[z] > Representations through equivalent functions > With related functions > Involving coth-1 > Involving sech-1(z2+1/2z) > Involving sech-1(z2+1/2z) and coth-1(i zr)





http://functions.wolfram.com/01.30.27.2298.01









  


  










Input Form





ArcSech[(z^2 + 1)/(2 z)] == (Sqrt[-((-1 + z)^2/(1 + z^2))]/ Sqrt[(-1 + z)^2/(1 + z^2)]) (Pi/2 - 2 I ArcCoth[I/z^(((1 - z)/(1 + z)) Sqrt[((1 + z)/(1 - z))^2])])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSech", "[", FractionBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]], RowBox[List["2", "z"]]], "]"]], "\[Equal]", RowBox[List[FractionBox[SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCoth", "[", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]]]], SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", "z"]], RowBox[List["1", "-", "z"]]], ")"]], "2"]]]]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </msqrt> <mtext> </mtext> </mrow> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </msqrt> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsech /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <arccoth /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> z </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", FractionBox[RowBox[List[SuperscriptBox["z_", "2"], "+", "1"]], RowBox[List["2", " ", "z_"]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["ArcCoth", "[", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], " ", SqrtBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "+", "z"]], RowBox[List["1", "-", "z"]]], ")"]], "2"]]]], RowBox[List["1", "+", "z"]]]]]]]], "]"]]]]]], ")"]]]], SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21