| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.30.27.2651.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcSech[z^2/(2 Sqrt[-1 - z^2])] == 
 (Sqrt[(2 Sqrt[-1 - z^2])/z^2 - 1]/Sqrt[1 - (2 Sqrt[-1 - z^2])/z^2]) 
  (Pi/2 - ((z^3 Sqrt[-2 - z^2] Sqrt[-1 - z^2])/(2 Sqrt[1 - I z] (1 + I z) 
      Sqrt[-2 - 3 z^2 - z^4])) Sqrt[(1 + z^2)/z^4] Sqrt[(I - z)/z] 
    Sqrt[-(I/z)] (Pi (Sqrt[-(1/z^2)] z - I Sqrt[(z + I Sqrt[2])/z] Sqrt[I/z] 
        Sqrt[(-I) z] Sqrt[z/(I Sqrt[2] + z)] + I Sqrt[(z - I Sqrt[2])/z] 
        Sqrt[-(I/z)] Sqrt[I z] Sqrt[z/((-I) Sqrt[2] + z)] - 
       (Sqrt[-((1 + z^2)/z^2)] Sqrt[(1 + z^2)/z^4] z^3)/(1 + z^2)) + 
     4 ArcCsch[z])) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["ArcSech", "[", FractionBox[SuperscriptBox["z", "2"], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[SqrtBox[RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]], SuperscriptBox["z", "2"]], "-", "1"]]], SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]], SuperscriptBox["z", "2"]]]]]], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", "3"], SqrtBox[RowBox[List[RowBox[List["-", "2"]], "-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], ")"]], "  ", SqrtBox[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", SuperscriptBox["z", "2"]]], "-", SuperscriptBox["z", "4"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], "z"]], " ", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], "-", RowBox[List["\[ImaginaryI]", SqrtBox[FractionBox[RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"]]]]], "z"]], " ", SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List["\[ImaginaryI]", SqrtBox["2"]]], "+", "z"]]]]]], "+", RowBox[List["\[ImaginaryI]", SqrtBox[FractionBox[RowBox[List["z", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"]]]]], "z"]], " ", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], SqrtBox["2"]]], "+", "z"]]]]]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SuperscriptBox["z", "3"]]], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["ArcCsch", "[", "z", "]"]]]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> sech </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <msqrt>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mtext>   </mtext>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mfrac>  </msqrt>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mrow>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> z </mi>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  <mo> + </mo>  <mi> z </mi>  </mrow>  </mfrac>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mrow>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> z </mi>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  <mo> + </mo>  <mi> z </mi>  </mrow>  </mfrac>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csch </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <arcsech />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> z </ci>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> z </ci>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <imaginaryi />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <arccsch />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSech", "[", FractionBox[SuperscriptBox["z_", "2"], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z_", "2"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]], SuperscriptBox["z", "2"]], "-", "1"]]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", "3"], " ", SqrtBox[RowBox[List[RowBox[List["-", "2"]], "-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], "z"]], " ", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z"]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List["z", "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"]]]]], "z"]], " ", SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"]]], "+", "z"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List["z", "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["2"]]]]], "z"]], " ", SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SqrtBox["2"]]], "+", "z"]]]]]], "-", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SuperscriptBox["z", "3"]]], RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], ")"]]]], "+", RowBox[List["4", " ", RowBox[List["ArcCsch", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", "z"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", "z"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", SuperscriptBox["z", "2"]]], "-", SuperscriptBox["z", "4"]]]]]]]]], ")"]]]], SqrtBox[RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]], SuperscriptBox["z", "2"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |