| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.12.16.0171.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcSin[x] - ArcSec[y] == 
 ((Sqrt[1 - x^2] Sqrt[1 - 1/y^2] - x/y)/
    Sqrt[(Sqrt[1 - x^2] Sqrt[1 - 1/y^2] - x/y)^2]) 
   ArcSin[x Sqrt[1 - 1/y^2] + Sqrt[1 - x^2]/y] + 
  (Pi/2) ((x - Sqrt[1 - x^2] Sqrt[1 - 1/y^2] y)/
    (Sqrt[(Sqrt[1 - x^2] Sqrt[1 - 1/y^2] - x/y)^2] y)) + 
  Pi (1 + (x - Sqrt[1 - x^2] Sqrt[1 - 1/y^2] y)/
     (Sqrt[(Sqrt[1 - x^2] Sqrt[1 - 1/y^2] - x/y)^2] y)) 
   Floor[(Arg[I x + Sqrt[1 - x^2]] + Arg[Sqrt[1 - 1/y^2] + I/y])/(2 Pi)] - 
  Pi (1 + (Sqrt[1 - x^2] Sqrt[1 - 1/y^2] - x/y)/
     Sqrt[(Sqrt[1 - x^2] Sqrt[1 - 1/y^2] - x/y)^2]) 
   Floor[-((-Pi + Arg[I x + Sqrt[1 - x^2]] + Arg[Sqrt[1 - 1/y^2] + I/y])/
      (2 Pi))] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List[RowBox[List["ArcSin", "[", "x", "]"]], "-", RowBox[List["ArcSec", "[", "y", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]]], " ", RowBox[List["ArcSin", "[", RowBox[List[RowBox[List["x", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], "y"]]], "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "2"], FractionBox[RowBox[List["x", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y"]]]], RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]], " ", "y"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["x", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y"]]]], RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]], " ", "y"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> x </mi>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mi> sec </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> y </mi>  <mo> ) </mo>  </mrow>  </mrow>  <mo>  </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mfrac>  <mi> x </mi>  <mi> y </mi>  </mfrac>  </mrow>  <msqrt>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mfrac>  <mi> x </mi>  <mi> y </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> x </mi>  </mrow>  <mo> + </mo>  <mfrac>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mi> y </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> x </mi>  </mrow>  <mo> + </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> y </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⌋ </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mi> x </mi>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> y </mi>  </mrow>  </mrow>  <mrow>  <msqrt>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mfrac>  <mi> x </mi>  <mi> y </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> y </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mfrac>  <mrow>  <mi> x </mi>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> y </mi>  </mrow>  </mrow>  <mrow>  <msqrt>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mfrac>  <mi> x </mi>  <mi> y </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </msqrt>  <mo> ⁢ </mo>  <mi> y </mi>  </mrow>  </mfrac>  </mrow>  <mo> - </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mfrac>  <mi> x </mi>  <mi> y </mi>  </mfrac>  </mrow>  <msqrt>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mfrac>  <mi> x </mi>  <mi> y </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </msqrt>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⌊ </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> x </mi>  </mrow>  <mo> + </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> x </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <mi> arg </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> y </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> + </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> y </mi>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mi> π </mi>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⌋ </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <plus />  <apply>  <arcsin />  <ci> x </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <arcsec />  <ci> y </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> x </ci>  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> x </ci>  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <arcsin />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> x </ci>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <pi />  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> x </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <arg />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <ci> x </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> y </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> x </ci>  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> y </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> x </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> y </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> x </ci>  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> y </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> x </ci>  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> x </ci>  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <floor />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <arg />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> x </ci>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> x </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <arg />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> y </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <pi />  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcSin", "[", "x_", "]"]], "-", RowBox[List["ArcSec", "[", "y_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], " ", RowBox[List["ArcSin", "[", RowBox[List[RowBox[List["x", " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "+", FractionBox[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], "y"]]], "]"]]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["x", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y"]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]], " ", "y"]], ")"]]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["x", "-", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], " ", "y"]]]], RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]], " ", "y"]]]]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]]]], "-", FractionBox["x", "y"]]], ")"]], "2"]]]]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "\[Pi]"]], "+", RowBox[List["Arg", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "+", RowBox[List["Arg", "[", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["y", "2"]]]]], "+", FractionBox["\[ImaginaryI]", "y"]]], "]"]]]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |