|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.12.16.0193.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSin[x] - ArcSech[y] ==
I Pi
(1 -
(-1)^(Floor[-(Arg[1/((I x + Sqrt[1 - x^2])^I (Sqrt[1/y - 1] Sqrt[
1 + 1/y] + 1/y)) + 1]/(2 Pi))] -
Floor[-(Arg[1/((I x + Sqrt[1 - x^2])^I (Sqrt[1/y - 1] Sqrt[1 + 1/y] +
1/y))]/(2 Pi))])) +
I
(-1)^(Floor[Arg[1/((I x + Sqrt[1 - x^2])^I (Sqrt[1/y - 1] Sqrt[1 + 1/y] +
1/y)) - 1]/(2 Pi) -
Arg[1/((I x + Sqrt[1 - x^2])^I (Sqrt[1/y - 1] Sqrt[1 + 1/y] + 1/y)) +
1]/(2 Pi) + 1/2] +
Floor[-(Arg[1/((I x + Sqrt[1 - x^2])^I (Sqrt[1/y - 1] Sqrt[1 + 1/y] +
1/y))]/Pi)]) (ArcSin[(1/2) (I x + Sqrt[1 - x^2])^I
(1/((I x + Sqrt[1 - x^2])^(2 I) (Sqrt[1/y - 1] Sqrt[1 + 1/y] + 1/y)^
2) + 1) (Sqrt[1/y - 1] Sqrt[1 + 1/y] + 1/y)] - Pi/2) -
2 I Pi (Floor[(-Arg[(I x + Sqrt[1 - x^2])^(-I)] -
Arg[1/(Sqrt[1/y - 1] Sqrt[1 + 1/y] + 1/y)] + Pi)/(2 Pi)] +
Floor[(Im[Log[Sqrt[1/y - 1] Sqrt[1 + 1/y] + 1/y]] + Pi)/(2 Pi)] +
Floor[(Re[Log[I x + Sqrt[1 - x^2]]] + Pi)/(2 Pi)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSin", "[", "x", "]"]], "-", RowBox[List["ArcSech", "[", "y", "]"]]]], "\[Equal]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]], "-", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "]"]], "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]], ")"]], "2"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]], ")"]]]], "]"]], "-", FractionBox["\[Pi]", "2"]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], "]"]]]], "-", RowBox[List["Arg", "[", FractionBox["1", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]], "]"]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> </mrow> <mo>  </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </msup> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> <mo> - </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </msup> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ⌊ </mo> <mrow> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </msup> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </msup> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </msup> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> π </mi> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mi> ⅈ </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> </msqrt> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mi> y </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⌋ </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <arcsin /> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arcsech /> <ci> y </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <arcsin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arg /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <imaginary /> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <apply> <real /> <apply> <ln /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <pi /> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["ArcSin", "[", "x_", "]"]], "-", RowBox[List["ArcSech", "[", "y_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]], "-", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "-", FractionBox[RowBox[List["Arg", "[", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "+", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "+", FractionBox["1", "2"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["-", FractionBox[RowBox[List["Arg", "[", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "]"]], "\[Pi]"]]], "]"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ArcSin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], "\[ImaginaryI]"], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]], ")"]], "2"]], "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]], ")"]]]], "]"]], "-", FractionBox["\[Pi]", "2"]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["-", RowBox[List["Arg", "[", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], ")"]], RowBox[List["-", "\[ImaginaryI]"]]], "]"]]]], "-", RowBox[List["Arg", "[", FractionBox["1", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Im", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List[SqrtBox[RowBox[List[FractionBox["1", "y"], "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", FractionBox["1", "y"]]]]]], "+", FractionBox["1", "y"]]], "]"]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", FractionBox[RowBox[List[RowBox[List["Re", "[", RowBox[List["Log", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "x"]], "+", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"]]]]]], "]"]], "]"]], "+", "\[Pi]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|