Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSin






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSin[z] > Representations through equivalent functions > With inverse function > Involving sin-1(cos(z))





http://functions.wolfram.com/01.12.27.2303.01









  


  










Input Form





ArcSin[Cos[z]] == (-1)^k (Pi/2 + Pi k - z) /; (k Pi < Re[z] < Pi (k + 1) || (Re[z] == Pi (k + 1) && Im[z] <= 0) || (Re[z] == k Pi && Im[z] >= 0)) && Element[k, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcSin", "[", RowBox[List["Cos", "[", "z", "]"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]], "-", "z"]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["k", " ", "\[Pi]"]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], "\[And]", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "0"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List["k", " ", "\[Pi]"]]]], "\[And]", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]], ")"]]]], ")"]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> &lt; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &lt; </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8805; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arcsin /> <apply> <cos /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <pi /> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <or /> <apply> <lt /> <apply> <times /> <ci> k </ci> <pi /> </apply> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <leq /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <real /> <ci> z </ci> </apply> <apply> <times /> <ci> k </ci> <pi /> </apply> </apply> <apply> <geq /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSin", "[", RowBox[List["Cos", "[", "z_", "]"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "+", RowBox[List["\[Pi]", " ", "k"]], "-", "z"]], ")"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["k", " ", "\[Pi]"]], "<", RowBox[List["Re", "[", "z", "]"]], "<", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]]]]]], "&&", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[LessEqual]", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", RowBox[List["k", " ", "\[Pi]"]]]], "&&", RowBox[List[RowBox[List["Im", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]], ")"]]]], ")"]], "&&", RowBox[List["k", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02