|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.12.27.0416.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSin[(c Sqrt[-1 + z^(2 r)/c^2])/z^r] == Sqrt[c^2/z^(2 r)] Sqrt[z^(2 r)/c^2]
((Pi z^r Sqrt[c^2/z^(2 r)])/(2 c) - Pi/2 + ArcCos[c/z^r])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcSin", "[", RowBox[List["c", " ", SuperscriptBox["z", RowBox[List["-", "r"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", " ", "r"]]], SuperscriptBox["c", "2"]]]]]]], "]"]], "\[Equal]", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "r"]]]]]], " ", SqrtBox[FractionBox[SuperscriptBox["z", RowBox[List["2", " ", "r"]]], SuperscriptBox["c", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["z", "r"], " ", SqrtBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "r"]]]]]]]], RowBox[List["2", " ", "c"]]], "-", FractionBox["\[Pi]", "2"], "+", RowBox[List["ArcCos", "[", FractionBox["c", SuperscriptBox["z", "r"]], "]"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> r </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msqrt> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> r </mi> </mrow> </msup> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> c </mi> <msup> <mi> z </mi> <mi> r </mi> </msup> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsin /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> r </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> r </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccos /> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSin", "[", RowBox[List["c_", " ", SuperscriptBox["z_", RowBox[List["-", "r_"]]], " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", FractionBox[SuperscriptBox["z_", RowBox[List["2", " ", "r_"]]], SuperscriptBox["c_", "2"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "r"]]]]]], " ", SqrtBox[FractionBox[SuperscriptBox["z", RowBox[List["2", " ", "r"]]], SuperscriptBox["c", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox["z", "r"], " ", SqrtBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "r"]]]]]]]], RowBox[List["2", " ", "c"]]], "-", FractionBox["\[Pi]", "2"], "+", RowBox[List["ArcCos", "[", FractionBox["c", SuperscriptBox["z", "r"]], "]"]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|