|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.12.27.0142.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcSin[Sqrt[z^2 - 1]/z] == (Sqrt[z^2]/(2 z)) (Pi - Pi Sqrt[1/z^2] z +
2 Sqrt[1/z^2] z ArcSec[z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]], "z"], "]"]], "\[Equal]", RowBox[List[FractionBox[SqrtBox[SuperscriptBox["z", "2"]], RowBox[List["2", " ", "z"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["\[Pi]", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "+", RowBox[List["2", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z", " ", RowBox[List["ArcSec", "[", "z", "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> sec </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsin /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arcsec /> <ci> z </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <pi /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]], "z_"], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["\[Pi]", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "+", RowBox[List["2", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z", " ", RowBox[List["ArcSec", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["2", " ", "z"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|