Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSin






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSin[z] > Representations through equivalent functions > With related functions > Involving csch-1 > Involving sin-1((z-(z2+1)1/2)1/2/(2z)1/2) > Involving sin-1((z-(z2+1)1/2)1/2/(2z)1/2) and csch-1(z)





http://functions.wolfram.com/01.12.27.2087.01









  


  










Input Form





ArcSin[Sqrt[z - Sqrt[z^2 + 1]]/Sqrt[2 z]] == (1/2) Sqrt[-(1/z^4)] z^2 Sqrt[1/(1 + z^2)] Sqrt[1 + z^2] ArcCsch[z] + (Pi/4) (1 - z Sqrt[1/z^2] Sqrt[1/(1 + z^2)] Sqrt[1 + z^2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]]]]], SqrtBox[RowBox[List["2", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "4"]]]]], " ", SuperscriptBox["z", "2"], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ArcCsch", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "4"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </msqrt> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> csch </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsin /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccsch /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <pi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSin", "[", FractionBox[SqrtBox[RowBox[List["z_", "-", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "+", "1"]]]]]], SqrtBox[RowBox[List["2", " ", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", SqrtBox[RowBox[List["-", FractionBox["1", SuperscriptBox["z", "4"]]]]], " ", SuperscriptBox["z", "2"], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]], " ", RowBox[List["ArcCsch", "[", "z", "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["z", " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21