Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcSinh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcSinh[z] > Representations through equivalent functions > With related functions > Involving coth-1 > Involving sinh-1(z) > Involving sinh-1(z) and coth-1((-z2-1)1/2/(-z2)1/2)





http://functions.wolfram.com/01.25.27.1495.01









  


  










Input Form





ArcSinh[z] == (Sqrt[(-z^2) (1 + z^2)]/(z Sqrt[-1 - z^2])) ArcCoth[Sqrt[-z^2 - 1]/Sqrt[-z^2]] + (Pi/(2 Sqrt[1 + z^2])) ((-Sqrt[(I + z)/(I - z)]) (I - z) + (I + z) Sqrt[(I - z)/(I + z)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcSinh", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]]], RowBox[List["z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]], RowBox[List["ArcCoth", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "-", "1"]]], SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], RowBox[List["\[ImaginaryI]", "-", "z"]]]]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "-", "z"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", "z"]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], RowBox[List["\[ImaginaryI]", "+", "z"]]]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> - </mo> <mrow> <msqrt> <mfrac> <mrow> <mi> &#8520; </mi> <mo> + </mo> <mi> z </mi> </mrow> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arcsinh /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <imaginaryi /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccoth /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcSinh", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]]], " ", RowBox[List["ArcCoth", "[", FractionBox[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["z", "2"]]], "-", "1"]]], SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List["z", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", SuperscriptBox["z", "2"]]]]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "+", "z"]], RowBox[List["\[ImaginaryI]", "-", "z"]]]]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", "-", "z"]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", "+", "z"]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", "-", "z"]], RowBox[List["\[ImaginaryI]", "+", "z"]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21