Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ArcTan






Mathematica Notation

Traditional Notation









Elementary Functions > ArcTan[z] > Series representations > Generalized power series > Expansions at z==i > For small integer powers of the function > For the second power





http://functions.wolfram.com/01.14.06.0047.01









  


  










Input Form





ArcTan[z]^2 == (-(1/4)) Log[(I (z - I))/2]^2 + ((z - I)^2/16) Sum[((I/2)^k/(k + 1)) (z - I)^k, {k, 0, Infinity}]^2 - (I/4) Log[(I (z - I))/2] (z - I) Sum[((I/2)^k/(k + 1)) (z - I)^k, {k, 0, Infinity}] /; Abs[z - I] < 2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["ArcTan", "[", "z", "]"]], "2"], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], SuperscriptBox[RowBox[List["Log", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "2"], "]"]], "2"]]], "+", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "2"], "16"], SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], " ", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "k"], RowBox[List["k", "+", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "k"]]]]], ")"]], "2"]]], "-", RowBox[List[FractionBox["\[ImaginaryI]", "4"], RowBox[List["Log", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "2"], "]"]], RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], " ", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "k"], RowBox[List["k", "+", "1"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "k"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["z", "-", "\[ImaginaryI]"]], "]"]], "<", "2"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> &#8520; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mn> 16 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> &#8520; </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 2 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <arctan /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <ln /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["ArcTan", "[", "z_", "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "]"]], "2"]]], "+", RowBox[List[FractionBox["1", "16"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "k"]]], RowBox[List["k", "+", "1"]]]]], ")"]], "2"]]], "-", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]]]], "]"]], " ", RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "\[ImaginaryI]"]], ")"]], "k"]]], RowBox[List["k", "+", "1"]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["z", "-", "\[ImaginaryI]"]], "]"]], "<", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02