Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ArcTan






Mathematica Notation

Traditional Notation









Elementary Functions > ArcTan[z] > Representations through equivalent functions > With related functions > Involving coth-1 > Involving tan-1(1-z/1+z) > Involving tan-1(1-z/1+z) and coth-1(i z)





http://functions.wolfram.com/01.14.27.2138.01









  


  










Input Form





ArcTan[(1 - z)/(1 + z)] == I ArcCoth[I z] + (Pi/4) (1 - (-1 + Sqrt[1/z^2] z) (1 + ((-1 + z^2)/z) Sqrt[z^2/(-1 + z^2)^2]) - 2 Sqrt[(z - I)/z] Sqrt[z/(z - I)]) /; Abs[z] != 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcTan", "[", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCoth", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "4"], RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], "z"], SqrtBox[FractionBox[SuperscriptBox["z", "2"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]]]], ")"]]]], "-", RowBox[List["2", SqrtBox[FractionBox[RowBox[List["z", "-", "\[ImaginaryI]"]], "z"]], SqrtBox[FractionBox["z", RowBox[List["z", "-", "\[ImaginaryI]"]]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[NotEqual]", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> - </mo> <mi> &#8520; </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> coth </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &#8800; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arctan /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <pi /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <arccoth /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <neq /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTan", "[", FractionBox[RowBox[List["1", "-", "z_"]], RowBox[List["1", "+", "z_"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcCoth", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox["z", "2"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]], "z"]]], ")"]]]], "-", RowBox[List["2", " ", SqrtBox[FractionBox[RowBox[List["z", "-", "\[ImaginaryI]"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "-", "\[ImaginaryI]"]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[NotEqual]", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21