Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
ArcTan






Mathematica Notation

Traditional Notation









Elementary Functions > ArcTan[z] > Representations through equivalent functions > With related functions > Involving sech-1 > Involving tan-1((z2)1/2/(1-z2)1/2) > Involving tan-1((z2)1/2/(1-z2)1/2) and sech-1(1/z)





http://functions.wolfram.com/01.14.27.2768.01









  


  










Input Form





ArcTan[Sqrt[z^2]/Sqrt[1 - z^2]] == ((Sqrt[-1 + z] z)/(Sqrt[1 - z] Sqrt[z^2])) ArcSech[1/z] + ((Pi Sqrt[z^2])/(2 z)) (1 + Sqrt[1/(1 - z)] Sqrt[1 - z] - Sqrt[1/(z + 1)] Sqrt[z + 1])










Standard Form





Cell[BoxData[RowBox[List[" ", RowBox[List[RowBox[List["ArcTan", "[", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", "z"]], RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", SqrtBox[SuperscriptBox["z", "2"]]]]], RowBox[List["ArcSech", "[", FractionBox["1", "z"], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[Pi]", SqrtBox[SuperscriptBox["z", "2"]]]], RowBox[List["2", "z"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", RowBox[List[SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]]]], ")"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sech </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arctan /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsech /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTan", "[", FractionBox[SqrtBox[SuperscriptBox["z_", "2"]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", "z"]], ")"]], " ", RowBox[List["ArcSech", "[", FractionBox["1", "z"], "]"]]]], RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", SqrtBox[SuperscriptBox["z", "2"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", RowBox[List[SqrtBox[FractionBox["1", RowBox[List["z", "+", "1"]]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]]]], ")"]]]], RowBox[List["2", " ", "z"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21