|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.27.03.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcTanh[I (Sqrt[3] - 2)] == -((Pi I)/12)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcTanh", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox["3"], "-", "2"]], ")"]]]], "]"]], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "12"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mn> 12 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arctanh /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTanh", "[", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[SqrtBox["3"], "-", "2"]], ")"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", "12"]]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|