Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcTanh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcTanh[z] > Continued fraction representations





http://functions.wolfram.com/01.27.10.0006.01









  


  










Input Form





ArcTanh[z] == z/(1 - z^2 + ContinueFraction[ {2 z^2 Floor[(1 + k)/2] (2 Floor[(1 + k)/2] - 1), (1 + 2 k) (1 - (1/2) (1 + (-1)^k) z^2)}, {k, 1, Infinity}]) /; !IntervalMemberQ[Interval[{-Infinity, -1}], z] && !IntervalMemberQ[Interval[{1, Infinity}], z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcTanh", "[", "z", "]"]], "\[Equal]", RowBox[List["z", "/", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["2", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["1", "+", "k"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["1", "+", "k"]], "2"], "]"]]]], "-", "1"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]], ")"]]]]]], "/;", "\[InvisibleSpace]", RowBox[List[RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", RowBox[List["-", "1"]]]], "}"]], "]"]], ",", "z"]], "]"]], "]"]], "\[And]", "\[InvisibleSpace]", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "z"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msubsup> <mrow> <msub> <mi> &#922; </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> &#8734; </mi> </msubsup> </mrow> </mfrac> </mrow> <mo> /; </mo> <mtext> &#8203; </mtext> <mrow> <mrow> <mi> z </mi> <mo> &#8713; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mtext> &#8203; </mtext> <mrow> <mi> z </mi> <mo> &#8713; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msubsup> <mrow> <msub> <mi> &#922; </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> &#8734; </mi> </msubsup> </mrow> </mfrac> </mrow> <mo> /; </mo> <mtext> &#8203; </mtext> <mrow> <mrow> <mi> z </mi> <mo> &#8713; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mtext> &#8203; </mtext> <mrow> <mi> z </mi> <mo> &#8713; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTanh", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["z", RowBox[List["1", "-", SuperscriptBox["z", "2"], "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["2", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["1", "+", "k"]], "2"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["1", "+", "k"]], "2"], "]"]]]], "-", "1"]], ")"]]]], ",", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List[RowBox[List["-", "\[Infinity]"]], ",", RowBox[List["-", "1"]]]], "}"]], "]"]], ",", "z"]], "]"]]]], "&&", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["1", ",", "\[Infinity]"]], "}"]], "]"]], ",", "z"]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29