|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.27.27.1196.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcTanh[z] == (Sqrt[-z^2]/z)
(2 ArcCsc[(Sqrt[2] (1 - z^2)^(1/4))/Sqrt[Sqrt[1 - z^2] + 1]] - Pi)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcTanh", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], "z"], RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["ArcCsc", "[", FractionBox[RowBox[List[SqrtBox["2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]], SqrtBox[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], "+", "1"]]]], "]"]]]], "-", "\[Pi]"]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> π </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <msqrt> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arctanh /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <pi /> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arccsc /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTanh", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["ArcCsc", "[", FractionBox[RowBox[List[SqrtBox["2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["1", "/", "4"]]]]], SqrtBox[RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]], "+", "1"]]]], "]"]]]], "-", "\[Pi]"]], ")"]]]], "z"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|