Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ArcTanh






Mathematica Notation

Traditional Notation









Elementary Functions > ArcTanh[z] > Representations through equivalent functions > With related functions > Involving cosh-1 > Involving tanh-1(z/(z2-1)1/2) > Involving tanh-1(z/(z2-1)1/2) and cosh-1(z)





http://functions.wolfram.com/01.27.27.2551.01









  


  










Input Form





ArcTanh[z/Sqrt[z^2 - 1]] == ((Sqrt[-1 - z] Sqrt[z^2])/(Sqrt[-z^2] Sqrt[1 + z])) ArcCosh[z] + (Sqrt[1 - z] Sqrt[1/(1 - z)] - (I Sqrt[1 - z^2])/Sqrt[-1 + z^2] - Sqrt[1 + z] Sqrt[1/(1 + z)]) ((Pi I)/2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ArcTanh", "[", FractionBox["z", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z"]]], " ", SqrtBox[SuperscriptBox["z", "2"]]]], RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]], RowBox[List["ArcCosh", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]]]]]], ")"]], FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "2"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> z </mi> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> </msqrt> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> - </mo> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arctanh /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arccosh /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTanh", "[", FractionBox["z_", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "-", "z"]]], " ", SqrtBox[SuperscriptBox["z", "2"]]]], ")"]], " ", RowBox[List["ArcCosh", "[", "z", "]"]]]], RowBox[List[SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "-", "z"]]]]]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", SqrtBox[FractionBox["1", RowBox[List["1", "+", "z"]]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21