|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.27.27.2576.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcTanh[Sqrt[z^2 - 1]/Sqrt[z^2]] ==
Sqrt[(z + 1)/z] Sqrt[z/(z + 1)] ArcCosh[z] +
((Pi Sqrt[-1 + z^2])/(2 Sqrt[1 - z^2])) (Sqrt[z^2] Sqrt[1/z^2] -
Sqrt[z^2]/z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]], SqrtBox[SuperscriptBox["z", "2"]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "+", "1"]], "z"]], SqrtBox[FractionBox["z", RowBox[List["z", "+", "1"]]]], RowBox[List["ArcCosh", "[", "z", "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["\[Pi]", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]]]], RowBox[List["2", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]]]], "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> </msqrt> </mrow> <mo> - </mo> <mfrac> <msqrt> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </msqrt> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arccosh /> <ci> z </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTanh", "[", FractionBox[SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]], SqrtBox[SuperscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "+", "1"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "+", "1"]]]], " ", RowBox[List["ArcCosh", "[", "z", "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[SuperscriptBox["z", "2"]], " ", SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]]]], "-", FractionBox[SqrtBox[SuperscriptBox["z", "2"]], "z"]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|