|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.27.27.2614.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ArcTanh[(2 z Sqrt[z^2 - 1])/(1 - 2 z^2)] == Pi I - 2 ArcCosh[z] /;
Pi/4 <= Arg[z] <= Pi/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["2", " ", "z", " ", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]], RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "-", RowBox[List["2", RowBox[List["ArcCosh", "[", "z", "]"]]]]]]]], "/;", RowBox[List[FractionBox["\[Pi]", "4"], "\[LessEqual]", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> ≤ </mo> <mrow> <mi> arg </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≤ </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <arctanh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <pi /> <imaginaryi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arccosh /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <leq /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arg /> <ci> z </ci> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["2", " ", "z_", " ", SqrtBox[RowBox[List[SuperscriptBox["z_", "2"], "-", "1"]]]]], RowBox[List["1", "-", RowBox[List["2", " ", SuperscriptBox["z_", "2"]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "-", RowBox[List["2", " ", RowBox[List["ArcCosh", "[", "z", "]"]]]]]], "/;", RowBox[List[FractionBox["\[Pi]", "4"], "\[LessEqual]", RowBox[List["Arg", "[", "z", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|