| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.27.27.3462.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | ArcTanh[(2 Sqrt[1 - z^2])/(-2 + z^2)] == 
 (-(Pi/(2 Sqrt[1 - z^2]))) ((-2 + z^2) Sqrt[z^4/(-1 + z^2)] 
     Sqrt[(-1 + z^2)/z^4] Sqrt[(-1 + z^2)/(-2 + z^2)^2] - 
    Sqrt[1 - 1/z^2] z (Sqrt[I/z] Sqrt[(-I) z] - Sqrt[-(I/z)] Sqrt[I z] + 
      Sqrt[1/z^2] z - Sqrt[(-1 + z)/z] Sqrt[z/(-1 + z)] + 
      Sqrt[1 + 1/z] Sqrt[z/(1 + z)])) - ((2 z)/Sqrt[1 - z^2]) Sqrt[1 - 1/z^2] 
   (Pi/2 - ((Sqrt[-1 + z] Sqrt[z])/Sqrt[1 - z]) Sqrt[1/z] ArcSech[z]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]], RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z", "2"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox["z", "4"], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "-", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "z"]]]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", "z"]]]], " ", SqrtBox[FractionBox["z", RowBox[List["1", "+", "z"]]]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["2", "z"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]], SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", SqrtBox["z"]]], SqrtBox[RowBox[List["1", "-", "z"]]]], " ", SqrtBox[FractionBox["1", "z"]], RowBox[List["ArcSech", "[", "z", "]"]]]]]], ")"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msup>  <mi> tanh </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> π </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 2 </mn>  </msup>  </mfrac>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> z </mi>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mrow>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mi> ⅈ </mi>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mi> z </mi>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mfrac>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mi> π </mi>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mrow>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mn> 1 </mn>  <mi> z </mi>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sech </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <arctanh />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <pi />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  </apply>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <imaginaryi />  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <arcsech />  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z_", "2"]]]]]], RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z_", "2"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z", "2"]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox["z", "4"], RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox["z", "4"]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["z", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", SuperscriptBox["z", "2"]]], ")"]], "2"]]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[FractionBox["\[ImaginaryI]", "z"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "z"]]]]], "-", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["\[ImaginaryI]", "z"]]]], " ", SqrtBox[RowBox[List["\[ImaginaryI]", " ", "z"]]]]], "+", RowBox[List[SqrtBox[FractionBox["1", SuperscriptBox["z", "2"]]], " ", "z"]], "-", RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "z"]]]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "+", FractionBox["1", "z"]]]], " ", SqrtBox[FractionBox["z", RowBox[List["1", "+", "z"]]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "z"]], ")"]], " ", SqrtBox[RowBox[List["1", "-", FractionBox["1", SuperscriptBox["z", "2"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox["\[Pi]", "2"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], " ", SqrtBox["z"]]], ")"]], " ", SqrtBox[FractionBox["1", "z"]], " ", RowBox[List["ArcSech", "[", "z", "]"]]]], SqrtBox[RowBox[List["1", "-", "z"]]]]]], ")"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |