|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.07.16.0162.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cos[a (b z^3)^(1/3)] == (1/(6 b^(2/3) z^2))
(((1 + E^(2 I a b^(1/3) z)) (b^(2/3) z^2 + b^(1/3) z (b z^3)^(1/3) +
(b z^3)^(2/3)) - E^((1/2) I a b^(1/3) z) ((-b^(1/3)) z + (b z^3)^(1/3))
((1 + E^(I a b^(1/3) z)) (2 b^(1/3) z + (b z^3)^(1/3))
Cosh[(1/2) Sqrt[3] a b^(1/3) z] - I Sqrt[3] (-1 + E^(I a b^(1/3) z))
(b z^3)^(1/3) Sinh[(1/2) Sqrt[3] a b^(1/3) z]))/E^(I a b^(1/3) z))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Cos", "[", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["6", " ", SuperscriptBox["b", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", RowBox[List["1", "/", "3"]]]]], " ", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["3"], " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["3"], " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mroot> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> - </mo> <mrow> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <mroot> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mroot> <mi> b </mi> <mn> 3 </mn> </mroot> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <cos /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> b </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <cosh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Cos", "[", RowBox[List["a_", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b_", " ", SuperscriptBox["z_", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", RowBox[List["1", "/", "3"]]]]], " ", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["3"], " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", SqrtBox["3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["z", "3"]]], ")"]], RowBox[List["1", "/", "3"]]], " ", RowBox[List["Sinh", "[", RowBox[List[FractionBox["1", "2"], " ", SqrtBox["3"], " ", "a", " ", SuperscriptBox["b", RowBox[List["1", "/", "3"]]], " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["6", " ", SuperscriptBox["b", RowBox[List["2", "/", "3"]]], " ", SuperscriptBox["z", "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|