Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function and a power function > Involving exp and power > Involving zalpha-1eb zr+ecos(c zr+g)





http://functions.wolfram.com/01.07.21.0435.01









  


  










Input Form





Integrate[z^(2 n) E^(b z^2 + e) Cos[c z^2 + g], z] == (-(1/4)) z E^e ((E^(I g) (Erfc[Sqrt[(-b - I c) z^2]] Gamma[1/2 + n] + Sum[((-b - I c) z^2)^(1/2 + k)/Pochhammer[1/2 + n, 1 + k - n], {k, 0, -1 + n}]/E^((-b - I c) z^2) - Sum[((-b - I c) z^2)^(1/2 + k)/Pochhammer[1/2 + n, 1 + k - n], {k, n, -1}]/E^((-b - I c) z^2)))/(((-b - I c) z^2)^(1/2) (-b - I c)^n) + (Erfc[Sqrt[(-b + I c) z^2]] Gamma[1/2 + n] + Sum[((-b + I c) z^2)^(1/2 + k)/Pochhammer[1/2 + n, 1 + k - n], {k, 0, -1 + n}]/E^((-b + I c) z^2) - Sum[((-b + I c) z^2)^(1/2 + k)/Pochhammer[1/2 + n, 1 + k - n], {k, n, -1}]/E^((-b + I c) z^2))/(E^(I g) ((-b + I c) z^2)^(1/2) (-b + I c)^n)) /; Element[n, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["2", "n"]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", "e"]]], RowBox[List["Cos", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], "z", " ", SuperscriptBox["\[ExponentialE]", "e"], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox["1", "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox["1", "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> e </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> g </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mi> n </mi> </mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mi> g </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mi> n </mi> </mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> e </ci> </apply> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> z </ci> <apply> <power /> <exponentiale /> <ci> e </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> g </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Erfc </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <ci> n </ci> </lowlimit> <uplimit> <cn type='integer'> -1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> g </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Erfc </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <ci> n </ci> </lowlimit> <uplimit> <cn type='integer'> -1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["2", " ", "n_"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", "e_"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "4"]]], " ", "z", " ", SuperscriptBox["\[ExponentialE]", "e"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", FractionBox["1", "2"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfc", "[", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], "+", "n"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["-", "1"]], "+", "n"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "n"]], RowBox[List["-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List[FractionBox["1", "2"], "+", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "n"]], ",", RowBox[List["1", "+", "k", "-", "n"]]]], "]"]]]]]]]]], ")"]]]]]], ")"]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18