Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Cos






Mathematica Notation

Traditional Notation









Elementary Functions > Cos[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric and a power functions > Involving sin and power > Involving zalpha-1sin(c z)cos(a z+b)





http://functions.wolfram.com/01.07.21.0754.01









  


  










Input Form





Integrate[z^(\[Alpha] - 1) Sin[c z] Cos[b + a z], z] == ((1/4) I z^\[Alpha] (((a - c)^2 z^2)^\[Alpha] ((-((-I) (a + c) z)^\[Alpha]) Gamma[\[Alpha], I (a + c) z] (Cos[b] - I Sin[b]) + (I (a + c) z)^\[Alpha] Gamma[\[Alpha], (-I) (a + c) z] (Cos[b] + I Sin[b])) - (I (a - c) z)^\[Alpha] ((a + c)^2 z^2)^\[Alpha] Gamma[\[Alpha], (-I) (a - c) z] (Cos[b] + I Sin[b]) + ((-I) (a - c) z)^\[Alpha] ((a + c)^2 z^2)^\[Alpha] Gamma[\[Alpha], I (a - c) z] (Cos[b] - I Sin[b])))/ (((a - c)^2 z^2)^\[Alpha] ((a + c)^2 z^2)^\[Alpha])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <imaginaryi /> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> b </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <sin /> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sin /> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> b </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <sin /> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <cos /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <sin /> <ci> b </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["b_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], " ", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", "b", "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Sin", "[", "b", "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18