|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.07.21.0965.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(E^(p z) Cos[c z])/(a + b Sin[d z]^2)^2, z] ==
(-((1/(I c + 2 I d + p)) (E^((I c + 2 I d + p) z)
((2 a + b) (2 a + b + 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
(c + 2 d - I p)/(2 d), 1, (c + 4 d - I p)/(2 d),
(b E^(2 I d z))/(2 a + b - 2 Sqrt[a] Sqrt[a + b])] +
(2 a + b) (-2 a - b + 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
(c + 2 d - I p)/(2 d), 1, (c + 4 d - I p)/(2 d),
(b E^(2 I d z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b])] +
2 Sqrt[a] ((-(2 a^(3/2) + 2 Sqrt[a] b + 2 a Sqrt[a + b] +
b Sqrt[a + b])) Hypergeometric2F1[(c + 2 d - I p)/(2 d), 2,
(c + 4 d - I p)/(2 d), (b E^(2 I d z))/(2 a + b -
2 Sqrt[a] Sqrt[a + b])] + (2 a^(3/2) + 2 Sqrt[a] b -
2 a Sqrt[a + b] - b Sqrt[a + b]) Hypergeometric2F1[
(c + 2 d - I p)/(2 d), 2, (c + 4 d - I p)/(2 d),
(b E^(2 I d z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b])])))) -
(1/((-I) c + 2 I d + p)) (E^(((-I) c + 2 I d + p) z)
((2 a + b) (2 a + b + 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
-((c - 2 d + I p)/(2 d)), 1, -((c - 4 d + I p)/(2 d)),
(b E^(2 I d z))/(2 a + b - 2 Sqrt[a] Sqrt[a + b])] +
(2 a + b) (-2 a - b + 2 Sqrt[a] Sqrt[a + b]) Hypergeometric2F1[
-((c - 2 d + I p)/(2 d)), 1, -((c - 4 d + I p)/(2 d)),
(b E^(2 I d z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b])] +
2 Sqrt[a] ((-(2 a^(3/2) + 2 Sqrt[a] b + 2 a Sqrt[a + b] +
b Sqrt[a + b])) Hypergeometric2F1[-((c - 2 d + I p)/(2 d)), 2,
-((c - 4 d + I p)/(2 d)), (b E^(2 I d z))/(2 a + b -
2 Sqrt[a] Sqrt[a + b])] + (2 a^(3/2) + 2 Sqrt[a] b -
2 a Sqrt[a + b] - b Sqrt[a + b]) Hypergeometric2F1[
-((c - 2 d + I p)/(2 d)), 2, -((c - 4 d + I p)/(2 d)),
(b E^(2 I d z))/(2 a + b + 2 Sqrt[a] Sqrt[a + b])]))))/
(4 a^(3/2) b (a + b)^(3/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d", " ", "z"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "2", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "2", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", "b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "+", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> </apply> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> </apply> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "1", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "2", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", "2", ",", FractionBox[RowBox[List["c", "+", RowBox[List["4", " ", "d"]], "-", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "1", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["2", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", "2", ",", RowBox[List["-", FractionBox[RowBox[List["c", "-", RowBox[List["4", " ", "d"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]]]], RowBox[List["2", " ", "d"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "+", "b"]]]]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d"]], "+", "p"]]]]], RowBox[List["4", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", "b", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|